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Summary

This thesis is concerned with practical issues surrounding the application of reinforcement
learning techniques to tasks that take place in high dimensional continuous state�space
environments� In particular� the extension of on�line updating methods is considered�
where the term implies systems that learn as each experience arrives� rather than storing
the experiences for use in a separate o��line learning phase� Firstly� the use of alternative
update rules in place of standard Q�learning �Watkins ����	 is examined to provide faster
convergence rates� Secondly� the use of multi�layer perceptron �MLP	 neural networks
�Rumelhart� Hinton and Williams ���
	 is investigated to provide suitable generalising
function approximators� Finally� consideration is given to the combination of Adaptive
Heuristic Critic �AHC	 methods and Q�learning to produce systems combining the bene�ts
of real�valued actions and discrete switching�
The di�erent update rules examined are based on Q�learning combined with the TD��	

algorithm �Sutton ����	� Several new algorithms� including Modi�ed Q�Learning and
Summation Q�Learning� are examined� as well as alternatives such as Q��	 �Peng and
Williams ����	� In addition� algorithms are presented for applying these Q�learning up�
dates to train MLPs on�line during trials� as opposed to the backward�replay method used
by Lin ����b	 that requires waiting until the end of each trial before updating can occur�
The performance of the update rules is compared on the Race Track problem of Barto�

Bradtke and Singh ����	 using a lookup table representation for the Q�function� Some
of the methods are found to perform almost as well as Real�Time Dynamic Programming�
despite the fact that the latter has the advantage of a full world model�
The performance of the connectionist algorithms is compared on a larger and more

complex robot navigation problem� Here a simulated mobile robot is trained to guide
itself to a goal position in the presence of obstacles� The robot must rely on limited
sensory feedback from its surroundings and make decisions that can be generalised to
arbitrary layouts of obstacles� These simulations show that the performance of on�line
learning algorithms is less sensitive to the choice of training parameters than backward�
replay� and that the alternative Q�learning rules of Modi�ed Q�Learning and Q��	 are
more robust than standard Q�learning updates�
Finally� a combination of real�valued AHC and Q�learning� called Q�AHC learning�

is presented� and various architectures are compared in performance on the robot prob�
lem� The resulting reinforcement learning system has the properties of providing on�line
training� parallel computation� generalising function approximation� and continuous vector
actions�
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Chapter �

Introduction

Problem� A system is required to interact with an environment in order to achieve a
particular task or goal� Given that it has some feedback about the current state of the
environment� what action should it take�

The above represents the basic problem faced when designing a control system to achieve a
particular task� Usually� the designer has to analyse a model of the task and decide on the
sequence of actions that the system should perform to achieve the goal� Allowances must
be made for noisy inputs and outputs� and the possible variations in the actual system
components from the modelled ideals� This can be a very time consuming process� and
so it is desirable to create systems that learn the actions required to solve the task for
themselves� One group of methods for producing such autonomous systems is the �eld of
reinforcement learning� which is the subject of this thesis�
With reinforcement learning� the system is left to experiment with actions and �nd

the optimal policy by trial and error� The quality of the di�erent actions is reinforced by
awarding the system payo�s based on the outcomes of its actions � the nearer to achieving
the task or goal� the higher the payo�s� Thus� by favouring taking actions which have
been learnt to result in the best payo�s� the system will eventually converge on producing
the optimal action sequences�
The motivation behind the work presented in this thesis comes from attempts to design

a reinforcement learning system to solve a simple mobile robot navigation task �which is
used as a testbed in chapter �	� The problem is that much of the theory of reinforcement
learning has concentrated on discrete Markovian environments� whilst many tasks can�
not be easily or accurately modelled by this formalism� One popular way around this is
to partition continuous environments into discrete states and then use the standard dis�
crete methods� but this was not found to be successful for the robot task� Consequently�
this thesis is primarily concerned with examining the established reinforcement learning
methods to extend and improve their operation for large continuous state�space problems�
The next two sections brie�y discuss alternative methods to reinforcement learning for

creating systems to achieve tasks� whereas the remainder of the chapter concentrates on
providing an introduction to reinforcement learning�

�



�� Introduction �

��� Control Theory

Most control systems are designed by mathematically modelling and analysing the problem
using methods developed in the �eld of control theory� Control theory concentrates on
trajectory tracking� which is the task of generating actions to move stably from one part
of an environment to another� To build systems capable of performing more complex
tasks� it is necessary to decide the overall sequence of trajectories to take� For example�
in a robot navigation problem� control theory could be used to produce the motor control
sequences necessary to keep the robot on a pre�planned path� but it would be up to a
higher�level part of the system to generate this path in the �rst place�
Although many powerful tools exist to aid the design of controllers� the di�culty re�

mains that the resulting controller is limited by the accuracy of the original mathematical
model of the system� As it is often necessary to use approximate models �such as lin�
ear approximations to non�linear systems	 owing to the limitations of current methods
of analysis� this problem increases with the complexity of the system being controlled�
Furthermore� the �nal controller must be built using components which match the design
within a certain tolerance� Adaptive methods do exist to tune certain parameters of the
controller to the particular system� but these still require a reasonable approximation of
the system to be controlled to be known in advance�

��� Arti�cial Intelligence

At the other end of the scale� the �eld of Arti�cial Intelligence �AI	 deals with �nding
sequences of high�level actions� This is done by various methods� mainly based on per�
forming searches of action sequences in order to �nd one which solves the task� This
sequence of actions is then passed to lower�level controllers to perform� For example� the
kind of action typically used by an AI system might be pick�up�object� which would
be achieved by invoking increasingly lower levels of AI or control systems until the actual
motor control actions were generated�
The di�culty with this type of system is that although it searches for solutions to

tasks by itself� it still requires the design of each of the high�level actions� including the
underlying low�level control systems�

��� Reinforcement Learning

Reinforcement learning is a class of methods whereby the problem to be solved by the
control system is de�ned in terms of payo�s �which represent rewards or punishments	�
The aim of the system is to maximise� the payo�s received over time� Therefore� high
payo�s are given for desirable behaviour and low payo�s for undesirable behaviour� The
system is otherwise unconstrained in its sequence of actions� referred to as its policy� used
to maximise the payo�s received� In e�ect� the system must �nd its own method of solving
the given task�
For example� in chapter �� a mobile robot is required to guide itself to a goal location

in the presence of obstacles� The reinforcement learning method for tackling this problem

�Or minimise� depending on how the payo�s are de�ned� Throughout this thesis� increasing payo�s
imply increasing rewards and therefore the system is required to maximise the payo�s received�
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Figure ���� Diagram of a reinforcement learning system�

is to give the system higher payo�s for arriving at the goal than for crashing into the ob�
stacles� The sequence of control actions to use can then be left to the system to determine
for itself based on its motivation to maximise the payo�s it receives�
A block diagram of a reinforcement system is shown in Fig� ���� which shows the basic

interaction between a controller and its environment� The payo� function is �xed� as are
the sensors and actuators �which really form part of the environment as far as the control
system is concerned	� The control system is the adaptive part� which learns to produce
the control action a in response to the state input x based on maximising the payo� r�

����� The Environment

The information that the system knows about the environment at time step t can be
encoded in a state description or context vector� xt� It is on the basis of this information
that the system selects which action to perform� Thus� if the state description vector does
not include all salient information� then the system�s performance will su�er as a result�
The state�space� X� consists of all possible values that the state vector� x� can take�

The state�space can be discrete or continuous�

Markovian Environments

Much of the work �in particular the convergence proofs	 on reinforcement learning has
been developed by considering �nite�state Markovian domains� In this formulation� the
environment is represented by a discrete set of state description vectors�X� with a discrete
set of actions� A� that can be performed in each state �in the general case� the available
actions may be dependent on the state i�e� A�x		� Associated with each action in each state
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is a set of transition probabilities which determine the probability P �xj jxi� a	 of moving
from state xi � X to state xj � X given that action a � A is executed� It should be noted
that in most environments P �xj jxi� a	 will be zero for the vast majority of states xj � for
example� in a deterministic environment� only one state can be reached from xi by action
a� so the state transition probability is � for this transition and � for all others�
The set of state transition probabilities models the environment in which the control

system is operating� If the probabilities are known to the system� then it can be said
to possess a world model� However� it is possible for the system to be operating in a
Markovian domain where these values are not known� or only partially known� a�priori�

����� Payo�s and Returns

The payo�s are scalar values� r�xi�xj	� which are received by the system for transitions
from one state to another� In the general case� the payo� may come from a probability
distribution� though this is rarely used� However� the payo�s seen in each state of a discrete
model may appear to come from a probability distribution if the underlying state�space is
continuous�
In simple reinforcement learning systems� the most desirable action is the one that

gives the highest immediate payo�� Finding this action is known as the credit assignment
problem� In this formulation long term considerations are not taken into account� and the
system therefore relies on the payo�s being a good indication of the optimal action to take
at each time step� This type of system is most appropriate when the result to be achieved
at each time step is known� but the action required to achieve it is not clear� An example
is the problem of how to move the tip of a multi�linked robot arm in a particular direction
by controlling all the motors at the joints �Gullapalli� Franklin and Benbrahim ����	�
This type of payo� strategy is a subset of the more general temporal credit assignment

problem� wherein a system attempts to maximise the payo�s received over a number of
time steps� This can be achieved by maximising the expected sum of discounted payo�s
received� known as the return� which is equal to�

E

�
�X
t��

�trt

�
����	

where the notation rt is used to represent the payo� received for the transition at time
step t from state xt to xt�� i�e� r�xt�xt��	� The constant � � � � � is called the discount
factor� The discount factor ensures that the sum of payo�s is �nite and also adds more
weight to payo�s received in the short�term compared with those received in the long�
term� For example� if a non�zero payo� is only received for arriving at a goal state� then
the system will be encouraged to �nd a policy that leads to a goal state in the shortest
amount of time� Alternatively� if the system is only interested in immediate payo�s� then
this is equivalent to � � ��
The payo�s de�ne the problem to be solved and the constraints on the control policy

used by the system� If payo�s� either good or bad� are not given to the system for
desirable�undesirable behaviour� then the system may arrive at a solution which does not
satisfy the requirements of the designer� Therefore� although the design of the system is
simpli�ed by allowing it to discover the control policy for itself� the task must be fully
described by the payo� function� The system will then tailor its policy to its speci�c
environment� which includes the controller sensors and actuators�
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����� Policies and Value Functions

The overall choice of actions that is made by the system is called the policy� �� The policy
need not be deterministic� it may select actions from a probability distribution�
The system is aiming to �nd the policy which maximises the return from all states

x � X� Therefore� a value function� V ��x	� which is a prediction of the return available
from each state� can be de�ned for any policy ��

V ��xt	 � E

�
�X
k�t

�k�trk

�
����	

The policy� ��� for which V ���x	 � V ��x	 for all x � X is called the optimal policy� and
�nding �� is the ultimate aim of a reinforcement learning control system�
For any state xi � X� equation ��� can be rewritten in terms of the value function

predictions of states that can be reached by the next state transition�

V ��xi	 �
X
xj�X

P �xj jxi� �	 �r�xi�xj	 � �V ��xj	� ���	

for discrete Markovian state�spaces� This allows the value function to be learnt iteratively
for any policy �� For continuous state�spaces� the equivalent is�

V ��xi	 �

Z
X

p�xjxi� �	 �r�xi�x	 � �V ��x	�dx ����	

where p�xjxi� �	 is the state�transition probability distribution� However� in the remainder
of this introduction� only discrete Markovian state�spaces are considered�

����� Dynamic Programming

A necessary and su�cient condition for a value function to be optimal for each state
xi � X is that�

V ���xi	 � max
a�A

X
xj�X

P �xj jxi� a	
h
r�xi�xj	 � �V ���xj	

i
����	

This is called Bellman�s Optimality Equation �Bellman ����	� This equation forms the
basis for reinforcement learning algorithms that make use of the principles of dynamic
programming �Ross ���� Bertsekas ����	� as it can be used to drive the learning of
improved policies�
The reinforcement learning algorithms considered in this section are applicable to

systems where the state transition probabilities are known i�e� the system has a world
model� A world model allows the value function to be learnt o��line� as the system does
not need to interact with its environment in order to collect information about transition
probabilities or payo�s�
The basic principle is to use a type of dynamic programming algorithm called value

iteration� This involves applying Bellman�s Optimality Equation �equation ���	 directly
as an update rule to improve the current value function predictions�

V �xi	� max
a�A

X
xj�X

P �xj jxi� a	 �r�xi�xj	 � �V �xj	� ���
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The above equation allows the value function predictions to be updated for each state�
but only if the equation is applied at each xi � X�� Further� in order to converge� this
equation has to be applied at each state repeatedly�
The optimal policy is therefore found from the optimal value function� rather than

vice versa� by using the actions a which maximise the above equation in each state xi�
These are called the greedy actions and taking them in each state is called the greedy
policy� It should be noted that the optimal policy� ��� may be represented by the greedy
policy of the current value function without the value function having actually converged
to the optimal value function� In other words� the actions that currently have the highest
predictions of return associated with them may be optimal� even though the predictions
are not� However� there is currently no way of determining whether the optimal policy
has been found prematurely from a non�optimal value function�
The update rule can be applied to states in any order� and is guaranteed to converge

towards the optimal value function as long as all states are visited repeatedly and an
optimal policy does actually exist �Bertsekas ����� Bertsekas and Tsiksiklis ����	� One
algorithm to propagate information is therefore to synchronously update the value function
estimates at every state� However� for convergence the order of updates does not matter
and so they can be performed asynchronously at all states xi � X one after another �a
Gauss�Seidel sweep	� This can result in faster convergence because the current update may
bene�t from information propagated by previous updates� This can be seen by considering
equation ��
� if the states xj that have high probabilities of being reached from state xi
have just been updated� then this will improve the information gained by applying this
equation�
Unfortunately� dynamic programming methods can be very computationally expensive�

as information may take many passes to propagate back to states that require long action
sequences to reach the goal states� Consequently� in large state�spaces the number of
updates required for convergence can become impractical�
Barto et al� ����	 introduced the idea of real�time dynamic programming� where the

only regions learnt about are those that are actually visited by the system during its normal
operation� Instead of updating the value function for every state in X� the states to be
updated are selected by performing trials� In this method� the system performs an update
at state xt and then performs the greedy action to arrive in a new state xt��� This can
greatly reduce the number of updates required to reach a usable policy� However in order
to guarantee convergence the system must still repeatedly visit all the states occasionally�
If it does not� it is possible for the optimal policy to be missed if it involves sequences of
actions that are never tested� This problem is true of all forms of real�time reinforcement
learning but must be traded against faster learning times� or tractability� which may make
full searches impractical�
In this thesis� two methods are examined for speeding up convergence� The �rst

is to use temporal di�erence methods� which are described in outline in section ����
and examined in much greater detail in chapter �� The second is to use some form of
generalising function approximator to represent V �x	� as for many systems the optimal
value function is a smooth function of x and thus for states close in state�space the values
V �x	 are close too� This issue is examined in chapter � where methods are presented for
using neural networks for reinforcement learning�

�Note that the update equation ��� is only suitable for discrete state�spaces� By considering equa�
tion ��� it can be seen that the equivalent continuous state�space update would involve integrating across
a probability distribution� which could make each update very computationally expensive�
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����� Learning without a Prior World Model

If a model of the environment is not available a�priori� then there are two options�

� Learn one from experience�

� Use methods which do not require one�

In both cases a new concept is introduced � that of exploration� In order to learn a world
model� the system must try out di�erent actions in each state to build up a picture of the
state�transitions that can occur� On the other hand� if a model is not being learnt� then
the system must explore in order to update its value function successfully�

Learning a World Model

If a world model is not known in advance� then it can be learnt by trials on the environment�
Learning a world model can either be treated as a separate task �system identi�cation	� or
can be performed simultaneously with learning the value function �as in adaptive real�time
dynamic programming �Barto et al� ���		� Once a world model has been learnt� it can
also be used to perform value function updates o��line �Sutton ����� Peng and Williams
���	 or for planning ahead �Thrun and M�oller ����	�
Learning a model from experience is straight�forward in a Markovian domain� The

basic method is to keep counters of the individual state transitions that occur and hence
calculate the transition probabilities using�

P �xj jxi� a	 �
n�xi� a�xj	

n�xi� a	
����	

where n�xi� a	 is the count of the number of times the action a has been used in state
xi� and n�xi� a�xj	 is the count of the number of times performing this action has led
to a transition from state xi to state xj� If there are any prior estimates of the values
of the probabilities� they can be encoded by initialising the counters in the appropriate
proportions� which may help accelerate convergence�
However� learning world models in more complex environments �especially continuous

state�spaces	 may not be so easy� at least not to a useful accuracy� If an inaccurate model
is used� then the value function learnt from it will not be optimal and hence nor will
the resulting greedy policy� The solution is to use value function updating methods that
do not require a world model� This is because predicting a scalar expected return in a
complex environment is relatively easy compared with trying to predict the probability
distribution across the next state vector values� It is this type of reinforcement learning
method that is examined throughout the remainder of this thesis�

Alternatives to Learning a World Model

If a model of the environment is not available� and the system cannot learn one� then
the value function updates must be made based purely on experience i�e� they must be
performed on�line by interacting with the environment� More speci�cally� on each visit to
a state� only one action can be performed� and hence information can only be learnt from
the outcome of that action� Therefore� it is very important to use methods that make
maximum use of the information gathered in order to reduce the number of trials that
need to be performed�
There are two main classes of method available�
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� Adaptive Heuristic Critic methods� which keep track of the current policy and
value function separately�

� Q�Learning methods which learn a di�erent form of value function which also
de�nes the policy�

These methods are examined in the following sections�

����� Adaptive Heuristic Critic

The Adaptive Heuristic Critic �AHC	 is actually a form of dynamic programming method
called policy iteration� With policy iteration� value functions and policies are learnt iter�
atively from one another by repeating the following two phases�

�� Learn a value function for the current �xed policy�

�� Learn the greedy policy with respect to the current �xed value function�

Repeatedly performing both phases to completion is likely to be computationally expensive
even for small problems� but it is possible for a phase to be performed for a �xed number
of updates before switching to the other �Puterman and Shin ����	� The limiting case for
policy iteration is to update the value function and policy simultaneously� which results
in the Adaptive Heuristic Critic class of methods�
The original AHC system �Barto� Sutton and Anderson ���� Sutton ����	 consists of

two elements�

� ASE The Associative Search Element chooses actions from a stochastic policy�

� ACE The Adaptive Critic Element learns the value function�

These two elements are now more generally called the actor and the critic �thus AHC
systems are often called Actor�Critic methods �Williams and Baird ���a		� The basic
operation of these systems is for the probability distribution used by the actor to select
actions to be updated based on internal payo�s generated by the critic�
Because there is no world model available� the value function must be learnt using a

di�erent incremental update equation from that of equation ��
� namely�

V �xt	� V �xt	 � � �rt � �V �xt��	� V �xt	� ����	

where � is a learning rate parameter� This is necessary as the only way the prediction at
state xt can be updated is by performing an action and arriving at a state xt���

�

E�ectively� with each visit to a state xi� the value V �xi	 is updated by sampling from
the possible state�transitions that may occur and so � acts as a �rst�order �lter on the
values seen� If the action taken each time the state is visited is �xed� then the next states
xj will be seen in proportion to the state�transition probabilities P �xj jxi� a	 and so the
expected prediction EfV �xi	g will converge�
The critic uses the error between successive predictions made by the value function to

provide a measure of the quality of the action� at� that was performed�

�t � rt � �V �xt��	� V �xt	 ����	

�The use of t as a subscript is to emphasise that these updates are performed for the state xt�xt��� � � �
in the order in which they are visited during a trial�
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Hence� if the result of the selected action was better than predicted by V �xt	� then �t will
be positive and can be used as a positive reinforcement to the action �and vice versa if
it is negative	� This value can be used as an immediate payo� in order to judge how the
actor should be altered to improve the policy�
The actor uses the internal reinforcement� �t� to update the probability of the action�

at� being selected in future� The exact manner in which this is done depends on the form
of the actor� As an illustration� it can be performed for the case of discrete actions by
summing the internal payo�s received over time�

W �xt� at	� W �xt� at	 � �t �����	

These weighting values� W �x� a	� can then be used as the basis on which the actor se�
lects actions in the future� with the actor favouring the actions with higher weightings�
Thus� actions which lead to states from which the expected return is improving will gain
weighting and be selected with a higher probability in the future�
The advantage of AHC methods is that the actions selected by the actor can be real�

valued� i�e� the actor can produce a continuous range of action values� rather than selecting
from a discrete set A� This topic is investigated in chapter ��

����� Q	Learning

In Q�learning �Watkins ����	� an alternative form of value function is learnt� called the
Q�function� Here the expected return is learnt with respect to both the state and action�

Q��xi� a	 �
X
xj�X

P �xj jxi� a	 �r�xi�xj	 � �V ��xj	� �����	

The value Q��xi� a	 is called the action value� If the Q�function has been learnt accurately�
then the value function can be related to it using�

V ��x	 � max
a�A

Q��x� a	 �����	

The Q�function can be learnt when the state�transition probabilities are not known�
in a similar way to the incremental value function update equation ���� The updates can
be performed during trials using�

Q�xt� at	� Q�xt� at	 � � �rt � �V �xt��	� Q�xt� at	� ����	

which by substituting equation ����� can be written entirely in terms of Q�function pre�
dictions�

Q�xt� at	� Q�xt� at	 � �

�
rt � �max

a�A
Q�xt��� a	�Q�xt� at	

�
�����	

This is called the one�step Q�learning algorithm�
When the Q�function has been learnt� the policy can be determined simply by taking

the action with the highest action value� Q�x� a	� in each state� as this predicts the greatest
future return� However� in the course of learning the Q�function� the system must perform
actions other than suggested by the greedy policy in case the current Q�function predictions
are wrong� The exploration policy used is critical in determining the rate of convergence of
the algorithm� and though Q�learning has been proved to converge for discrete state�space
Markovian problems �Watkins and Dayan ����� Jaakkola� Jordan and Singh ���	� this
is only on the condition that the exploration policy has a �nite probability of visiting all
states repeatedly�
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����
 Temporal Di�erence Learning

Temporal di�erence learning �Sutton ����	 is another incremental learning method that
can be used to learn value function predictions� The algorithm is described in detail in
the next chapter� but here a brief overview is given�
To explain the concept behind temporal di�erence learning �TD�learning	� consider a

problem where a sequence of predictions� Pt� Pt��� � � �� is being made of the expected value
of a random variable rT at a future time T � At this time� the predictions Pt for all t � T

could be improved by making changes of�

�Pt � ��rT � Pt	 �����	

where � is a learning rate parameter� The above equation can be expanded in terms of
the temporal di�erence errors between successive predictions i�e�

�Pt � � ��Pt�� � Pt	 � �Pt�� � Pt��	 � � � �� �PT�� � PT��	 � �rT � PT��	�

� �
T��X
k�t

�Pk�� � Pk	 ����
	

where PT � rT � This means that at time step t� each prediction Pk for k � t could be
updated using the current TD�error� �Pt�� � Pt	� This idea forms the basis of temporal
di�erence learning algorithms� as it allows the current TD�error to be used at each time
step to update all previous predictions� and so removes the necessity to wait until time T
before updating each prediction by applying equation �����
In fact� Sutton introduced an entire family of temporal di�erence algorithms called

TD��	 where � is a weighting on the importance of future TD�errors to the current pre�
diction� such that�

�Pt � �
T��X
k�t

�Pk�� � Pk	�
t�k �����	

Therefore� equation ���
 is called a TD��	 algorithm since it is equivalent to � � �� At the
other end of the scale� if � � � then each update �Pt is only based on the next temporal
di�erence error� �Pt�� � Pt	� For this reason� one�step Q�learning �equation ����	 and the
incremental value function update �equation ���	 are regarded as TD��	 algorithms� as they
involve updates based only on the next TD�error� Potentially� therefore� the convergence
rates of these methods can be improved by using temporal di�erence algorithms with
� � �� The original AHC architecture of Barto et al� ����	 used this kind of algorithm
for updating the ASE and ACE� and in the next chapter alternatives for performing Q�
function updates with � � � are discussed�

����� Limitations of Discrete State	Spaces

In this chapter� all of the algorithms have been discussed in relation to �nite�state Marko�
vian environments and hence it has been assumed that the information gathered is stored
explicitly at each state as it is collected� This implies the use of a discrete storage method�
such as a lookup�table� where each state vector� xi � X� is used to select a value� V �xi	�
which is stored independently of all others� The number of entries required in the table is
therefore equal to jXj� which for even a low dimensional state vector x can be large� In
the case of Q�learning� the number of independent values that must be stored to represent
the function Q�x� a	 is equal to jXjjAj� which is even larger� Furthermore� each of these
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values must be learnt� which requires multiple applications of the update rule� and hence
the number of updates �or trials in the case of real�time methods	 required becomes huge�
The problem is that in the above discussions� it has been assumed that there is abso�

lutely no link between states in the state�space other than the transition probabilities� A
factor that has not been examined is that states that are �close� in the state�space �i�e� their
state vectors x are similar	 may require similar policies to be followed to lead to success
and so have very similar predictions of future payo�s� This is where generalisation can
help make seemingly intractable problems tractable� simply by exploiting the fact that
experience gained by the system in one part of the state�space may be equally relevant
to neighbouring regions� This becomes critical if reinforcement learning algorithms are
to be applied to continuous state�space problems� In such cases the number of discrete
states in X is in�nite and so the system is unlikely to revisit exactly the same point in the
state�space more than once�

��� Overview of the Thesis

Much of the work done in the reinforcement learning literature uses low dimensional
discrete state�spaces� This is because reinforcement learning algorithms require extensive
repeated searches of the state�space in order to propagate information about the payo�s
available and so smaller state�spaces can be examined more easily� From a theoretical point
of view� the only proofs of convergence available for reinforcement learning algorithms are
based on information being stored explicitly at each state or using a linear weighting of the
state vector� However� it is desirable to extend reinforcement learning algorithms to work
e�ciently in high dimensional continuous state�spaces� which requires that each piece of
information learnt by the system is used to its maximum e�ect� Two factors are involved�
the update rule and the function approximation used to generalise information between
similar states� Consideration of these issues forms a major part of this thesis�
Over this chapter� a variety of reinforcement learning methods have been discussed�

with a view to presenting the evolution of update rules that can be used without requiring a
world model� These methods are well suited to continuous state�spaces� where learning an
accurate world model may be a di�cult and time�consuming task� Hence� the remainder
of this thesis concentrates on reinforcement learning algorithms that can be used without
the need to learn an explicit model of the environment�
The overall aim� therefore� is to examine reinforcement learning methods that can be

applied to solving tasks in high dimensional continuous state�spaces� and provide robust�
e�cient convergence�
The remainder of the thesis is structured as follows�

Chapter �� Watkins presented a method for combining Q�learning with TD��	 to speed
up convergence of the Q�function� In this chapter� a variety of alternative Q�learning
update rules are presented and compared to see if faster convergence is possible� This
includes novel methods called Modi�ed Q�Learning and Summation Q�Learning� as
well as Q��	 �Peng and Williams ����	� The performance of the update rules is then
compared empirically using the discrete state�space Race Track problem �Barto et
al� ���	�

Chapter �� One choice for a general function approximator that will work with con�
tinuous state inputs is the multi�layer perceptron �MLP	 or back�propagation neu�
ral network� Although the use of neural networks in reinforcement problems has
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been examined before �Lin ����� Sutton ����� Anderson ���� Thrun ����� Tesauro
����� Boyan ����	� the use of on�line training methods for performing Q�learning
updates with � � � has not been examined previously� These allow temporal dif�
ference methods to be applied during the trial as each reinforcement signal becomes
available� rather than waiting until the end of the trial as has been required by
previous connectionist Q�learning methods�

Chapter �� The MLP training algorithms are empirically tested on a navigation problem
where a simulated mobile robot is trained to guide itself to a goal position in a �D
environment� The robot must �nd its way to a goal position while avoiding obstacles�
but only receives payo�s at the end of each trial� when the outcome is known �the
only information available to it during a trial are sensor readings and information
it has learnt from previous trials	� In order to ensure the control policy learnt is
as generally applicable as possible� the robot is trained on a sequence of randomly
generated environments� with each used for only a single trial�

Chapter �� The Robot Problem considered in chapter � involves continuous state�space
inputs� but the control actions are selected from a discrete set� Therefore� in this
chapter� stochastic hill�climbing AHC methods are examined as a technique for pro�
viding real�valued actions� However� as a single continuous function approximator
may not be able to learn to represent the optimal policy accurately �especially if it
contains discontinuities	� a hybrid system called Q�AHC is introduced� which seeks
to combine real�valued AHC learning with Q�learning�

Chapter �� Finally� the conclusions of this thesis are given� along with considerations of
possible future research�
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Alternative Q�Learning Update

Rules

The standard one�step Q�learning algorithm as introduced by Watkins �����	 was pre�
sented in the last chapter� This has been shown to converge �Watkins and Dayan �����
Jaakkola et al� ���	 for a system operating in �xed Markovian environment� However�
these proofs give no indication as to the convergence rate� In fact� they require that every
state is visited in�nitely often� which means that convergence to a particular accuracy
could be in�nitely slow� In practice� therefore� methods are needed that accelerate the
convergence rate of the system so that useful policies can be learnt within a reasonable
time�
One method of increasing Q�learning convergence rates is to use temporal di�erence

methods with � � �� which were brie�y introduced in the last chapter �section ����	�
Temporal di�erence methods allow accelerated learning when no model is available� whilst
preserving the on�line updating property of one�step reinforcement learning methods� This
on�line feature is explored further in the next chapter� when on�line updating of neural
networks is examined�
In the �rst part of this chapter� the TD�learning algorithm is derived for a general

cumulative payo� prediction problem� This results in easier interpretation of a range
TD�learning algorithms� and gives a clearer insight into the role played by each of the
parameters used by the method� In particular� it shows that the TD�learning parameter �
can be considered constant during trials� in that it does not need to be adjusted in order to
implement learning rules such as TD���n	 �Sutton and Singh ����	 or the original method
of combining Q�learning and TD��	 suggested by Watkins �����	�
A number of methods for updating a Q�function using TD��	 techniques are then ex�

amined� including the standard method introduced by Watkins and also the more recent
Q��	 method introduced by Peng and Williams �����	� In addition� several novel methods
are introduced� including Modi�ed Q�Learning and Summation Q�Learning� In the �nal
section of this chapter� the performance of these Q�learning methods is compared empiri�
cally on the Race Track problem �Barto et al� ���	� which is one of the largest discrete
Markovian control problems so far studied in the reinforcement learning literature�

�
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��� General Temporal Di�erence Learning

In section ���� the basic concepts behind TD�learning �Sutton ����	 were introduced�
In this section� the method is considered in greater detail� by deriving the TD�learning
equations for a general prediction problem and examining some of the issues surrounding
its application to reinforcement learning tasks� This will be useful when considering the
application of this method to Q�learning update rules in the remainder of the chapter�
Consider a problem where the system is trying to learn a sequence of predictions�

Pt� Pt��� � � �� such that eventually�

Pt � E

�
�X
k�t

�
�k�t�
t ck

�
����	

for all t� The term �
�n�
t is de�ned as follows�

�
�n�
t �

� Qt�n
k�t�� �k n � �

� n � �
����	

where � � �t � �� The right hand part of equation ��� represents a general discounted
return� The discounted return usually used in reinforcement learning problems is the
special case where �t has a �xed value � for all t� and ct � rt�
The prediction Pt can be updated according to�

�Pt � �t

�
�X
k�t

�
�k�t�
t ck � Pt

�
���	

where �t is a learning constant and is used so that the prediction will converge towards the
expected value as required �equation ���	� Equation �� can be expanded in terms of the
temporal di�erences between successive predictions in a similar manner to the example
given in the introduction �section ����	�

�Pt � �t ��ct � �t��Pt�� � Pt	 � �t���ct�� � �t��Pt�� � Pt��	 � � � ��

� �t

�X
k�t

�ck � �k��Pk�� � Pk	�
�k�t�
t ����	

Taking things a step further� the predictions Pt could be generated by a function approx�
imator P � which is parametrised by a vector of internal values w� Assuming these values
could be updated by a gradient ascent step utilising the vector of gradients rwPt �which
is made up from the partial derivatives 	Pt
	wt	 then�

�wt � �t

�
�X
k�t

�ck � �k��Pk�� � Pk	�
�k�t�
t

�
rwPt ����	

where �t is a learning rate parameter� which includes �t� The overall change to the
parameters w is the summation of the individual wt over time� which can be rearranged
as follows�

�w �
�X
t��

�wt �
�X
t��

�t

�
�X
k�t

�ck � �k��Pk�� � Pk	�
�k�t�
t

�
rwPt

�
�X
t��

�ct � �t��Pt�� � Pt	
tX

k��

�k�
�t�k�
k rwPk ���
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Thus� a general temporal di�erence update equation can be extracted which can be used
to update the parametersw at each time step t according to the current TD�error between
predictions� i�e�

�wt � �ct � �t��Pt�� � Pt	
tX

k��

�k�
�t�k�
k rwPk ����	

The summation at the end of the equation has the property that it can be incrementally
updated at each time step t as well� If a parameter vector e is introduced to store these
summation terms �one element per element of w	� then it can be updated according to�

et �
tX

k��

�k�
�t�k�
k rwPk

� �tet�� � �trwPt ����	

and therefore equation ��� becomes simply�

�wt � �ct � �t��Pt�� � Pt	et ����	

The values e are referred to as the eligibilities of the parameters w� as they determine
how large a change will occur in response to the current TD�error� This mechanism will
be used extensively in this thesis for on�line updating of neural networks �see chapter 	�
In fact� when Sutton introduced the TD�learning class of algorithms� he included an

extra parameter � � � � � which can be incorporated in the eligibility mechanism and
results in the TD��	 family of algorithms� Thus equation ��� becomes�

et � ��t�	et�� � �trwPt �����	

The purpose of the � term is to adjust the weighting of future temporal di�erence errors
as seen by a particular prediction Pt� This may be helpful if the future errors have a
high variance� as a lower value of � will reduce the e�ect of these errors� but at the
cost of increased bias in the prediction �it will be biased towards the value of predictions
occurring closer in time	� This is known as a bias�variance trade�o�� and is important to
reinforcement systems which change their policy over time� since a changing policy will
result in changing average returns being seen by the system� Thus a future prediction of
return Pt�T may not have much relevance to the current prediction Pt if T is large� since
the sequence of actions that led to that region of the state�space may not occur again as
the policy changes�
Equations ��� and ���� represent the TD�learning update equations for a system pre�

dicting a generalised return using a parametrised function approximator� This presentation
of the equations di�ers slightly from the usual forms� which assume a �xed learning rate
�t � � and thus leave the learning rate at the start of the weight update in equation ����
However� the above general derivation allows for the training parameter �t to be di�erent
at each state xt� which has resulted in the learning rate �t being incorporated in the eligi�
bility trace� In the Race Track problem presented at the end of this chapter� the learning
rate is di�erent at each time step� as it is a function of the number of visits that have been
made to the current state� and so this di�erence is important� However� when presenting
the Q�function updating rules in section ���� a constant � is assumed for clarity�
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����� Truncated Returns

Watkins �����	 showed that using temporal di�erence updates with a constant � results in
an overall update at each state equivalent to taking the weighted sum of truncated returns�
e�g� for the general discounted return �equation ���	� the truncated return is�

c
�n�
t � ct � �

���
t ct�� � �

���
t ct�� � � � �� �

�n���
t ct�n�� � �

�n�
t Pt�n �����	

where the prediction Pt�n is used to estimate the remainder of the sequence� The overall
update produced by a sequence of TD�errors is�

�ct � �t��Pt�� � Pt	 � �t����ct�� � �t��Pt�� � Pt��	 � � � �

� ��� �	
h
�ct � �

���
t Pt��	 � ��ct � �

���
t ct�� � �

���
t Pt��	 � � � �

i
� Pt

� ��� �	
h
c
���
t � �c

���
t � � � �

i
� Pt �����	

which is a weighted sum of truncated returns� This result helps clarify the use of the �
parameter as a method for adjusting the importance of estimates of the return made over
longer sequences� It is essential to note� however� that it is only applicable where a constant
� value is used�� Despite this� it is common when using TD methods to consider varying
the value of � at each time step� for instance for standard Q�learning �see section �����	
or methods such as TD���n	 �section �����	� even though this renders the interpretation
of the updates as weighted sums of truncated returns invalid�
However� equation ���� does hold for arbitrary values of �t and thus it will be shown

over the remainder of this chapter that using a constant � value is not a problem� it is
the value of �t that should be adjusted and not � at all� Although this has no practical
e�ect on the type of updates used� it does allow a clearer understanding of how they are
derived and what the parameters and updates represent�

Finite Trial Length

The summation of equation ���� assumes time t � 	� but most reinforcement systems
are stopped after reaching a goal state and hence only perform the summation for a �nite
number of steps� This does not e�ect the interpretation of the summation� which turns
out to be equivalent to remaining in the �nal state forever� receiving immediate payo�s ct
of zero� For example� if the system reaches the goal at time step t � � then�

�ct � �t��Pt�� � Pt	 � ��� �	
h
�ct � �

���
t Pt��	 � ��ct � �

���
t � � �

���
t Pt��	 � � � �

i
� Pt

� ��� �	
h
c
���
t � �c

���
t � � � �

i
� Pt ����	

where it should be remembered that Pt�n for n � � is equal to Pt��� as the system is
assumed to remain in the �nal state forever�

����� Value Function Updates

Over the previous sections� a temporal di�erence algorithm for a general cumulative payo�
prediction problem has been derived and some of its properties examined� However� the
term TD��	 is generally associated with the speci�c case of learning a value function� where

�If � � � then the sequence of TD�errors is equivalent to
P
�

k�t
�
�k�t�
t ck � Pt � c

���
t � Pt�
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Pt � Vt� ct � rt� �t � �� and V � V �x	 is the value function prediction of returns� The
parameters of the function representing V can therefore be updated using a TD�algorithm�

�wt � �rt � �Vt��� Vt	et �����	

et � ���	et��� �trwVt �����	

The above allows the value function prediction Vt to be updated at each time step using
the TD�error and eligibility trace mechanism�
Convergence proofs �Sutton ����� Dayan ����� Jaakkola et al� ���	 have shown that

this form of temporal di�erence algorithm will guarantee the predictions� V � to converge
to the expected return for any value of � � � � ��� This is under the conditions that
the predictions are made in a Markovian environment with a �xed policy and transition
probabilities� and the function approximator used to store the predictions is simply a linear
weighting of the input vector� i�e� w�x� However� these proofs do not provide indications
as to the convergence rate �the convergence is asymptotic� so could be in�nitely slow to
reach the required accuracy	 and so the choice of values for �t and � must be made with
care�

The TD��n� Algorithm

TD���n	 is a method suggested in Sutton and Singh �����	 when considering the optimum
values for the parameters �t and �� The paper concentrates on predicting the value
function� V � in �xed Markovian domains where the system is not trying to learn a policy
�thus the sequences of states and payo�s seen are entirely controlled by the state transition
probabilities	�
In this environment� a prediction will converge to the expected value if the returns it

sees are averaged over all trials� This can be achieved by keeping count of how many times
the state has been visited and then updating its prediction according to�

�Vt �
�

nt
�rt � �Vt�� � Vt� ����
	

where nt is the number of times the state has been visited� including the current visit at
time t� By then considering the change in Vt��� a temporal di�erence algorithm can be
constructed where�

�wt � �rt � �Vt�� � Vt�et �����	

et � ��
�

nt
	wt �

�

nt
rwVt �����	

This algorithm only makes sense for a lookup table representation� as wt � V in the
above equation� Hence the value of 	Vt
	wt is � for the current state and zero for all
others� By comparing the above algorithm with the general TD equation ���� it can be
seen that �t � �
nt� Also� comparison with the eligibility update equation ���� suggests
letting �t � � and therefore � � �
nt� The latter gives rise to the name of the algorithm
as TD���n	� However� this means that � is not a constant and thus the truncated return
interpretation �equation ����	 cannot be used�

�In fact� they will converge to the expected return only if the learning rate �t is reduced over time� If
�t is not reduced� then the expected value of the prediction will converge to this value�
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However� an alternative way of looking at the above algorithm is to let �t � �
nt and
� � �� Then letting Pt � Vt� it can be seen that�

rt � �Vt�� � rt �
nt�� � �

nt��
�Vt��� �t��Pt�� �����	

and thus ct � rt� �nt��� �	�Vt��
nt��� Therefore the interpretation of section ����� still

applies� with the sequence of TD�errors equal to c
���
t � Pt �because � � �	� This leaves

the question of what the return c
���
t for this form of updates actually represents�

c
���
t � ct � �t��ct�� � �t���t��ct�� � � � �

� rt �
nt�� � �

nt��
�Vt���

�

nt��
�rt���

�

nt��

nt�� � �

nt��
��Vt�� � � � �

� rt �
�

nt��

�
�nt�� � �	Vt�� � rt�� �

�

nt��
��nt�� � �	Vt�� � � � ��

�
�����	

This is an expansion of the expected discounted return and shows how the current value
function predictions� V � will gain importance as the number of state visits� n� go up�
The overall aim of this section has been to demonstrate as an example that the TD���n	

algorithm can be viewed using the general TD framework described in section ���� By
doing this� it has been shown that � can be considered to remain constant with a value
of � and so is e�ectively not used in this algorithm� This helps clarify the role of � as the
weighting parameter for the summation of truncated returns� For the �xed environment
considered for TD���n	� setting � less than � would not useful� but in problems where the
policy� and thus the returns seen� change� this helps avoid early biasing of predictions and
therefore action choices�

��� Combining Q�Learning and TD��	

One�step Q�learning makes minimal use of the information received by the system� by
only updating a single prediction for a single state�action pair at each time�step� TD��	
methods o�er a way of allowing multiple predictions to be updated at each step and hence
speeding up convergence�
Firstly� consider the one�step Q�learning algorithm applied to a general function ap�

proximator� such that each prediction Q�xt� at	 is made by a function using a set of internal
parameters wt to make the prediction� In this case� equation ���� is applied to update the
parameters according to�

�wt � �

�
rt � �max

a�A
Qt�� � Qt

�
rwQt �����	

where Qt is used as a notational shorthand for Q�xt� at	 and � is a constant learning rate
parameter� rwQt is a vector of the partial derivatives 	Qt
	wt� which will be referred to
as the output gradients�

����� Standard Q	Learning

In order to speed up learning� Watkins �����	 suggests combining Q�learning with tempo�
ral di�erence methods using � � �� In this formulation� the current update error is used



�� Alternative Q�Learning Update Rules �	

to adjust not only the current estimate� Qt� but also that of previous states� by keeping a
weighted sum of earlier output gradients�

�wt � �

�
rt � �max

a�A
Qt�� � Qt

� tX
k��

���	t�krwQk �����	

The one�step Q�learning equation is therefore a special instance of this equation where
� � �� To distinguish the algorithm represented by equation ���� from the methods
presented over the next sections� this will be referred to as standard Q�learning�
An important point about equation ���� is that it is not a correct TD�learning algo�

rithm unless the greedy policy is followed at all times� i�e� the temporal di�erence errors
will not add up correctly�

�X
k�t

�k�t
�
rk � �max

a�A
Qk�� �Qk

�

�

�X
k�t

�k�trk � Qt ����	

unless the action corresponding to maxa�AQ�xt� at	 is performed at every time step�
Watkins recognised this and suggested setting � � � whenever non�greedy actions are
performed �as is necessary for exploration� see section ����	�
However� by comparing the standard Q�learning equations with the general temporal

di�erence update equations presented in section ���� this update algorithm will be seen to
follow directly by substitution into equations ��� and ����� with the proviso that it is �t
that is set to zero and not � as suggested by Watkins�
This can be seen by letting Pt � Qt� Then the values of ct and �t depend on whether

Pt�� � maxa�AQt or not� which is down to whether the system performs the greedy action
or not� If the greedy action is performed then ct � rt and �t � �� However� if it is not�
then the TD�error is equivalent to�

rt � �max
a�A

Qt�� � ��Pt�� � Pt �����	

which implies that ct � rt � �maxa�AQt�� and �t�� � �� Using these values has exactly
the same e�ect as zeroing �� but means that the sum of truncated returns interpretation
of equation ���� can be seen to still apply� In fact� by considering equation ��� with these
values of ct and �t� it can be seen that the e�ect of the zero �t�� is the same as if the
trial has ended in the state xt��� Clearly� this will introduce bias into the returns seen by
the system and thus in the next section an alternative Q�learning update rule is presented
which avoids this problem�

����� Modi�ed Q	Learning

The question is whether maxa�AQ�x� a	 really provides the best estimate of the return of
the state x� In the early stages of learning� the Q�function values of actions that have not
been explored is likely to be completely wrong� and even in the latter stages� the maximum
value is more likely to be an over�estimation of the true return available �as argued in Thrun
and Schwartz ����		� Further� the standard update rule for Q�learning combined with
TD��	 methods requires �t to be zero for every step that a non�greedy action is taken�
As from the above arguments the greedy action could in fact be incorrect �especially in
the early stages of learning	� zeroing the e�ect of subsequent predictions on those prior to
a non�greedy action is likely to be more of a hindrance than a help in converging on the
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required predictions� Furthermore� as the system converges to a solution� greedy actions
will be used more to exploit the policy learnt by the system� so the greedy returns will be
seen anyway� Therefore� a new update algorithm is suggested here� based more strongly
on TD��	 for value function updates �section ����	� called Modi�ed Q�Learning��

The proposed alternative update rule is�

�wt � � �rt � �Qt�� � Qt�
tX

k��

���	t�krwQk �����	

This di�ers from standard Q�learning in the use of the Qt�� associated with the action
selected� rather than the greedy maxa�AQt�� used in Q�learning�

� This ensures that the
temporal di�erence errors will add up correctly� regardless of whether greedy actions are
taken or not� without introducing zero �t terms� This can be seen from the general TD�
learning equations derived in section ���� as Pt � Qt� ct � rt and �t � � at all time steps�
If greedy actions are taken� however� then this equation is exactly equivalent to standard
Q�learning� and so� in the limit when exploration has ceased and the greedy policy is being
followed� the updates will be the same as for standard Q�learning �equation ����	�
Modi�ed Q�Learning therefore samples from the distribution of possible future returns

given the current exploration policy� rather than just the greedy policy as for normal
Q�learning� Therefore� the Q�function will converge to�

Q�xt� at	� E

�
rt � �

X
a�A

P �ajxt��	Q�xt��� a	

�
����
	

which is the expected return given the probabilities� P �ajxt	� of actions being selected�
Consequently� at any point during training� the Q�function should give an estimation of
the expected returns that are available for the current exploration policy� As it is normal
to reduce the amount of exploration as training proceeds� eventually the greedy action
will be taken at each step� and so the Q�function should converge to the optimal values�
Can this algorithm be guaranteed to converge in a Markovian environment� as TD��		

and one�step Q�learning can� The proof of Jaakkola et al� ����	 relies on the max
operator� which has been discarded in Modi�ed Q�Learning� On the other hand� at each
step� the value seen depends on the transition probability multiplied by the probability of
selecting the next action i�e� P �xt��jxt� at	P �at��jxt��	� The overall e�ect is equivalent to
a transition probability P �xt��jxt	 as seen by a TD��	 process� which is known to converge
if these values are constant �Dayan ����� Jaakkola et al� ���	� So� clearly� if the policy� and
thus P �ajx	� is constant then Modi�ed Q�Learning will converge to the expected return
given the current policy� Any restrictions that exist for convergence to be guaranteed when
the policy is changing are related to the way in which the action probabilities P �ajx	 change
over time� Whether the proofs based on stochastic approximation theory �Jaakkola et al�
���� Tsitsiklis ����	 can be modi�ed to provide these bounds is an open question�

�Though Rich Sutton suggests SARSA� as you need to know State�Action�Reward�State�Action before
performing an update 	Singh and Sutton �

���

�Wilson 	�

�� noted the similarities between Q�learning and the bucket�brigade classi�er system 	Hol�
land �
���� Using this interpretation� the bucket�brigade algorithm is equivalent a TD	� form of Modi�ed
Q�Learning�

�In the speci�c form de�ned in section ������
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����� Summation Q	Learning

Considering equation ���
� it is clear that another novel update would be to use expected
return given the current action probabilities i�e�

P
a�A P �ajxt��	Q�xt��� a	� instead of the

maximum value� maxa�AQ�xt��� a	� as in the standard update rule� or the selected action
value� Q�xt��� at��	� as used in Modi�ed Q�Learning� This rule� which will be called
Summation Q�Learning� has attractions as it takes the probability of selecting actions
into account directly� rather than indirectly as for Modi�ed Q�Learning or not at all for
standard Q�learning�
However� simply summing the temporal di�erence errors over time will lead to similar

problems as for standard Q�learning� in that they will not add up correctly� The solution
can be found by considering the general TD�learning algorithm of section ��� and what the
predictions Pt and Pt�� actually represent at each time step� If at�� is the action selected
to be performed at time step t�� and Pt � Qt� then the temporal di�erence error at each
time step will be equal to�

rt � �
X

a��at��

P �ajxt��	Qt�� � �P �at��jxt��	Pt�� � Pt �����	

Thus� it can be seen that ct � rt �
P

a��at�� P �ajxt��	Qt�� and �t � �P �at��jxt��	� In
other words� in order for the temporal di�erences sum correctly� it is necessary to include
the probability of the selected action� P �at���xt��	� into the eligibility trace along with
�� leading to an overall update algorithm of�

�wt � �

�
rt � �

X
a�A

P �ajxt��	Qt�� �Qt

�
et �����	

et � ���	P �atjxt	et�� �rwQt �����	

However� experiments have shown that this update rule actually performs much worse
than standard Q�learning and Modi�ed Q�Learning� despite appearing to be the most
theoretically sound� This is due to the fact that the probability term in the eligibility
trace actually results in reducing the size of updates to earlier states� Also� the summation
of action values weighted by probabilities ends up giving too much weighting to poor
estimates and thus su�ers from the problem of bias that occurs with standard Q�learning�

����� Q��

Peng and Williams �����	 presented another method of combining Q�learning and TD��	�
called Q��	� This is based on performing a standard one�step Q�learning update to improve
the current prediction Qt and then using the temporal di�erences between successive greedy
predictions to update it from there on� regardless of whether greedy actions are performed
or not� This means that the eligibilities do not need to be zeroed� but requires that
two di�erent error terms be calculated at each step� Peng presented the algorithm for
discrete state�space systems� whilst here it is extended for use with a general function
approximator�
At each time step� an update is made according to the one�step Q�learning equa�

tion ����� Then a second update is made using�

�wt � �

�
rt � �max

a�A
Qt�� �max

a�A
Qt

� t��X
k��

���	t�krwQk ����	
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Note the summation is only up to step t� �� If a continuous state�space function approx�
imator is being updated� both changes will a�ect the same weights and so result in an
overall update of�

�wt � �

�
�rt � �max

a�A
Qt�� � Qt	rwQt � �rt � �max

a�A
Qt�� �max

a�A
Qt	et��

�
����	

where�
et � ���	et���rwQt ����	

This algorithm does not �t the general TD�learning framework presented in section ����
because a prediction Pt � Qt does not appear in equation ��� unless it corresponds with
the greedy action� However� the algorithm can still be interpreted as a weighted sum of
truncated returns�

�rt � �max
a�A

Qt�� � Qt	 � ���rt��� �max
a�A

Qt�� �max
a�A

Qt��	 � � � �

� ��� �	

�
�rt � �max

a�A
Qt��	 � ��rt � �rt�� � ��max

a�A
Qt��	 � � � �

�
�Qt

� ��� �	
h
r
���
t � �r

���
t � � � �

i
�Qt ���	

where r
�n�
t is therefore equal to�

r
�n�
t � rt � �rt��� ��rt�� � � � �� �n��rt�n�� � �nmax

a�A
Qt�n ����	

The truncated returns summed by Modi�ed Q�Learning can be found by substitution into
equation ���� and turn out to be equal to�

r
�n�
t � rt � �rt�� � ��rt�� � � � �� �n��rt�n�� � �nQt�n ����	

Therefore� Q��	 and Modi�ed Q�Learning are very similar� in that they both sum the
truncated return estimates of cumulative discounted payo�s� regardless of whether greedy
or non�greedy actions are performed �i�e� the return seen is for the current policy	� The
only di�erence is with the value used to estimate the remainder of the return� Modi�ed
Q�Learning uses the Qt estimates� which should be good estimates of this return� as that
is what they are being updated to represent� Q��	 uses the biased greedy estimates�
maxa�AQt� which are estimates of what the predictions should eventually represent� The
di�erence is subtle and in the experiments presented in section ���� the di�erence in
performance between the algorithms is also small�

����� Alternative Summation Update Rule

The thinking behind Q��	 suggests another possibility� In section ����� it was suggested
that a summation of the Q�function values weighted by the probability of their being
chosen might provide a good update rule� However� it was then shown that this requires
that the eligibility traces fade o� in proportion to the probability P �atjxt	 of the chosen
action at each step� which is equivalent to using low � values� However� this problem
can be avoided by using two updates at each time step as in Q��	 i�e� by performing an
immediate update of�

�wt � �

�
rt � �

X
a�A

P �ajxt��	Qt�� �Qt

�
rwQk ���
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and updating the predictions at all previously visited states using�

�wt � �

�
rt � �

X
a�A

P �ajxt��	Qt�� �
X
a�A

P �ajxt	Qt

�
t��X
k��

���	t�krwQk ����	

Again� these two updates should be summed together to give the overall update �wt as
for the Q��	 update in equation ���� The resulting new update rule will be referred to
as Summation Q��	�
This means that the eligibility trace fades in proportion to ���	 as for equation ����

rather than discounting it further using the action probability� P �atjxt	� as for Summation
Q�Learning �equation ����	� However� it does result in the most computationally expensive
update of those presented here� as there is the requirement to calculate both the summation
across actions and the two TD�error terms at each time step�

����� Theoretically Unsound Update Rules

The previous sections have presented a variety of methods for combining TD��	 methods
and Q�learning in an attempt to produce faster convergence when learning a Q�function�
It was discussed in section ����� that� when performing standard Q�learning updates� not
zeroing the eligibilities when non�greedy actions are performed means that the temporal
di�erence errors do not add up correctly� To avoid this it is necessary to zero �t when
non�greedy actions are performed�
However� the question is whether temporal di�erence errors failing to sum correctly

is actually a problem� If it is not then standard Q�learning with non�zeroed �t� and the
summation update rule of section ���� ignoring the action probability� P �atjxt	� in the
eligibility trace� become viable update rules�
 To distinguish these two algorithms from
the others� they will be referred to as Fixed Q�learning and Fixed Summation Q�Learning
respectively�
It is certainly possible to construct conditions under which using these update rules

would result in undesirable� and perhaps even unstable� update sequences� For example�
consider a system learning using Fixed Q�learning updates in the situation where in each
state the maximum Q�function prediction is equal to its optimum value of Q�� All other
actions predict a value of q where q � Q�� Also � � � and there are no payo�s until the
end of the trial �rt � �	� Each time the system performs the greedy action� the TD�error
will be zero and so no changes in prediction will occur� However� the eligibilities will be
not be zero� but equal to the summation of error gradients� If a non�greedy action is
performed� the TD�error will be �Q�� q i�e� an indication that the last prediction was too
low� This will update the action value for the state�action pair that has a value of q� but�
due to the non�zero eligibilities� the greedy predictions at the previously visited states will
change in response too� Therefore� these states will now predict values slightly over Q��
which is not what is required at all� This will happen each time a non�greedy action is
performed and so these predictions will continue to grow as a result�
This e�ect may be kept in check� as the state�action pairs which contain an over�

prediction could be corrected back in a later trial� The danger� however� is that these
unwanted changes could lead to instability�
Despite this� in the experiments presented later in this chapter� it is found that these

types of update rule can perform better than their more theoretically sound counterparts

	This latter method was also suggested in Sathiya Keerthi and Ravindran 	�

�� when discussing
Modi�ed Q�Learning as originally presented in Rummery and Niranjan 	�

���
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�for instance� Q�learning with �xed �t outperforms standard Q�learning with �t zeroed for
non�greedy action choices	� This is because the e�ect that they overcome � unnecessarily
cautious masking of the e�ects of exploratory actions and thus increased bias � is more
important than the occasional poor updates they introduce�

��� The Race Track Problem

Having introduced a variety of update rules for combining Q�learning with TD��	 methods�
here results are presented of experiments to provide empirical evidence about the relative
merits of the di�erent update rules�
The Race Track problem used here is exactly as presented by Barto et al� ����	 in

their report on Real�Time Dynamic Programming� which included a comparison of RTDP
with one�step Q�learning� This problem was chosen as it is one of the largest discrete state�
space control problems thus far considered in the reinforcement learning literature� Hence�
given the desire to investigate methods suitable for larger problems� this task provides a
good test to compare the relative performance of the di�erent update algorithms�

����� The Environment

The �race tracks� are laid out on �D grids as shown in Figs� ��� and ���� Hence� each track
is a discrete Markovian environment� where the aim is for a robot to guide itself from
the start line to the �nish line in the least number of steps possible� The robot state is
de�ned in terms of �px� py� vx� vy	 i�e� its position and velocity �all integer values	 in the
x and y planes� At each step� the robot can select an acceleration �ax� ay	 choosing from
f��� ����g in both axes� It therefore has � possible combinations and thus actions to
choose from� However� there is a ��� probability that the acceleration it selects is ignored
and ��� �	 is used instead�
The robot receives a payo� of �� for each step it makes� and thus the only reward

for reaching the goal is that no more costs are incurred� If the robot moves o� the
track� it is simply placed at a random point on the starting line and the trial continues�
The two tracks and the learning parameters are exactly as used by Barto et al� This
includes a learning rate that reduces with the number of visits to a state�action pair and
a Boltzmann exploration strategy with exponentially decreasing temperature parameter
�see Appendix A for details	�
A lookup table representation was used to store the Q�function values� This means

that the parameter vector wt used in the update algorithms is simply a vector of all action
values� Q�x� a	� with one entry for each state�action pair� Hence 	Qt
	wt is � for the Q�
function entry corresponding to current state�action pair and zero for all others� The
eligibility traces are implemented as a bu�er of the most recently visited states� which
maintains only states with eligibilities greater than a certain threshold �in this work� ���
was used	� The bu�er technique was used as to implement the eligibilities as one per
state�action pair� and then update them all at each time step� would be impractical �this
is di�culty of using a lookup table representation	�
Real�Time Dynamic Programming �RTDP	 was also implemented to provide a per�

formance comparison� In this method� the value function V �xt	 is learnt and is updated


Barto et al� 	�

�� used a �� costs and selected actions to minimise the expected future cost� Here
negative payo�s are used to achieve the same e�ect�
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when a state is visited by performing the following dynamic programming update�

V �xt	 � max
a�A

X
x�X

P �xja�xt	 �rt � �V �x	� ����	

where P �xja�xt	 is the probability of reaching a state x from xt given that action a is
performed� It is therefore necessary to have access to a full world model� to perform the
RTDP updates�

����� Results

The two race tracks used for testing are shown at the top of Figs� ��� and ���� The training
curves for one�step Q�learning �equation ����	 and RTDP �equation ���	 are also shown�
which represent the two extremes in convergence rates of the methods studied here� Each
method was repeated �� times on the same problem with di�erent random number seeds
and the results averaged to give the training curves reproduced here� The results are shown
in terms of the average number of steps required to reach the �nish line per epoch� where
an epoch consisted of �� trials� The lines representing one standard deviation either side
of the curves are included for reference and to show that the problem has been reproduced
exactly as de�ned in Barto et al� ����	�
In this section� the results of applying the di�erent update rules discussed in this

chapter on the Race Track problem are presented� The methods under test are�

� Standard Q�learning �equation ����	 with the eligibilities zeroed whenever a non�
greedy action is performed�

� Modi�ed Q�learning �equation ����	�

� Summation Q�learning �equation ����	�

� Q�� �equation ���	�

� Summation Q�� �equations ��
 and ���	�

� Fixed Standard Q�learning where the eligibilities are not zeroed �section ����
	�

� Fixed Summation Q�learning where P �ajx	 is not used in the eligibilities �sec�
tion ����
	�

Again� each training curve is the average over �� runs of the algorithm with di�ering initial
random seeds�
The �rst results are shown in Fig� ��� and �� for the small track using two di�erent

values of �� As can be seen� the performance of all the methods improves with the higher
value of �� which shows that in this problem the long term payo�s are important to solving
the task �which is reasonable as the overall goal of the system is to reach the �nish line
and so stop accumulating negative payo�s	� The performance of standard Q�learning is
better than the simple one�step updates� but is actually worse than the Fixed Q�learning
using the constant �t � �� The Summation Q�Learning method performs even worse to
start with� but catches up the standard Q�learning method by the end of the run for both
values of ��

�Or� in the case of Adaptive�RTDP� to learn one 	Barto et al� �

���
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On the lower graphs� the performance of Q��	� Fixed Summation� Summation Q��	�
and Modi�ed Q�Learning can be seen to be almost identical at both values of �� In fact�
at a � value of ����� these methods manage to learn at almost the same rate as Real�
Time Dynamic Programming� even though RTDP has the advantage of a full model of
the environment transition probabilities�
The second set of graphs in Fig� ��� and ��
 show the performance of the methods

on the large race track� The ranking of the di�erent update rules the same as on the
small track� Q��	 performs noticeably worse than the other methods on the lower graph
of Fig� ��� when � � ���� At the higher � value� virtually all of the methods appear to
be able to converge at the same kind of rate as can be achieved using RTDP updates�
The one exception is Summation Q�Learning� which does barely better than when using
� � ����
Finally� the performance of the di�erent choices of TD�error are considered by using

the one�step TD��	 versions of the algorithms� There are only  di�erent algorithms
tested� standard Q�learning� Modi�ed Q�Learning and Summation Q�Learning� The other
algorithms di�er from these algorithms only in the way that the eligibility traces are
handled� but when � � � these di�erences disappear� Thus Q��	 and Fixed Q�learning
become equivalent to standard Q�learning� whilst Summation Q��	 and Fixed Summation
Q�Learning become equivalent to Summation Q�Learning�
Fig� ��� shows the relative performance of the  di�erent choices of TD�error� Modi�ed

Q�Learning updates perform the best� especially on the large race track� Summation Q�
Learning starts by improving its policy at the same rate as standard Q�learning� but
gradually pulls ahead towards the end of the runs� and in fact more or less catches up
Modi�ed Q�Learning for the small race track test� So� it appears from this task that the
less biased the TD�error used� the better the performance of the update method� In other
words� it is better to pass back genuine information as it is accumulated over the course
of the trial� rather than rely on intermediate predictions that may not be based on any
information at all �i�e� they may be simply initial settings	�

����� Discussion of Results

The results consistently demonstrated the Modi�ed� Summation Q��	 and Fixed Sum�
mation Q�Learning rules provided the fastest convergence of the update rules considered�
Q��	 was equally fast on most of the problems� apart from on the large track when � � ���
was used �Fig� ���	� Of the other methods� Fixed Q�learning was the best� followed by
standard Q�learning and �nally Summation Q�Learning�
Of the fastest methods� Modi�ed Q�Learning has the advantage of being the least

computationally expensive and easiest to implement� Summation Q��	 is at the other end
of the scale in terms of computational expense� requiring the calculation of two TD�error
terms and a summation across all actions to be performed at every time step� So although
it performs as well as Modi�ed Q�Learning� it does not o�er any advantages� A similar
argument applies to Q��	 and Fixed Summation Q�Learning� In addition� the two rules
with ��xed� �t fall into the category of being theoretically unsound� and so whilst they
work well on this problem� there could be situations in which they could lead to unstable
updates� Overall� therefore� Modi�ed Q�Learning o�ers the most e�cient Q�function
update rule on the basis of these experiments�
Real Time Dynamic Programming provided faster convergence than any of the Q�

learning methods� However� RTDP has the advantage of a world model� which it requires
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Figure ���� Top� The small race track used for testing� The start line is on the left and the
�nish line is on the right �the shaded squares�� The lines show a typical trajectory achieved
by the robot after training� Bottom� Graphs for one�step Q�learning and Real�Time Dynamic
Programming� The dashed lines mark one standard deviation either side of the mean as
measured over �� runs�
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Figure ���� Small race track tests for � 	 
��� Graphs show the relative performance of the
di�erent update rules across epochs� Each epoch consists of �
 trials and each curve is the
average over �� runs� The one�step Q�learning and RTDP lines are included for reference�
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Figure ���� Top� The large race track used for testing� The start line is on the left and the
�nish line is on the right �the shaded squares�� The lines show a typical trajectory achieved
by the robot after training� Bottom� Graphs for one�step Q�learning and Real�Time Dynamic
Programming� The dashed lines mark one standard deviation either side of the mean as
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Figure ���� Large race track tests for � 	 
��� Graphs show the relative performance of the
di�erent update rules across epochs� Each epoch consists of �
 trials and each curve is the
average over �� runs� The one�step Q�learning and RTDP lines are included for reference�
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� learning using Q�learning� Summation Q�Learning�
and Modi�ed Q�Learning updates� The RTDP curve is shown for comparison�
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in order to operate� Performing each RTDP update requires calculating the outcomes
of performing all of the actions in the state� including all of the alternatives caused by
the probabilistic nature of the state transitions� In the Race Track problem� this means
that the computational expense is actually greater than the Q�learning methods� despite
the fact that the combined Q�learning and TD��	 methods require several updates to be
performed at each time step due to the discrete bu�er of eligibilities traces� Given the
small improvement RTDP brings even in the Race Track problem where the it has access
to a perfect model of the environment� it suggests that Q�learning methods are of more
practical use for tasks where the environment is harder to model�

����� What Makes an E�ective Update Rule�

On this problem� the best Q�function update rules are Modi�ed Q�Learning� Q��	 and
Summation Q��	� which all perform similarly� What they have in common is that they all
use a constant �t � � which ensures that the eligibilities are never zeroed and so future
TD�errors are seen by previously visited states� The actual update made at each step�
whether it is based on Qt� maxQt or

P
a P �ajxt	Qt� is not so critical� However� as the

results for � � � show �Fig� ���	� the least biased estimate� Qt� performed the best by
providing the most new information�
In �nite length trials� the most important state and payo� is the �nal one� as this

�grounds� the overall TD�error that is seen by the system and thus contains the most
information of any of the updates� This can be most clearly understood by considering
early trials� At this time� the predictions at each state will just be random initial values
and not represent good estimates of the return available� The immediate payo�s will allow
the system to move the predictions to the right levels relative to one another� but it is
only the �nal state that will provide the absolute indiction of the return available�
It is therefore clear why the update rules that result in the most states receiving this

�nal information do better than methods such as Summation Q�Learning� which uses low
eligibility values� or standard Q�learning� which restricts which states see this information
by reducing the eligibilities to zero every so often� It also makes it clearer why high values
of � provide faster convergence in this task than low values�

����� Eligibility Traces in Lookup Tables

In order to implement the eligibility traces in a lookup table� there are several options�
One is to maintain one eligibility at every state x � X� then to update them all at every
time step according to equation ���� and all the predictions according to equation ���� An
alternative is to maintain a bu�er of the most recently visited states and only update those�
This latter option is the most commonly used� as if the product ��t�	 is less than �� then
the eligibilities will decay exponentially towards zero� Thus� after only a few time steps
they will usually be small enough to be removed from the update list without introducing
much prediction bias� This was the method used in the experiments�
A recent method �Cichosz ����	 provides an alternative and potentially computation�

ally cheaper method of performing these updates� by keeping track of the n�step truncated
return and using this to update the prediction made at time t�n only� The disadvantage
is that this method does not allow for the case where �t varies with time �as is required
by standard Q�learning and Summation Q�Learning	� However� it could be used with
Modi�ed Q�Learning updates without a problem�
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��� Summary

A number of alternative Q�learning update rules have been introduced which seek to
provide the fastest convergence when temporal di�erence updates with � � � are made�
Of those presented� Modi�ed Q�Learning� Q��	� and Summation Q��	 have been found to
provide the fastest convergence� However� of these methods� Modi�ed Q�Learning has the
advantage of being the simplest and thus least computationally expensive� and so on this
basis represents the most successful update rule presented in this chapter�
In addition� one of the most important aspects of this chapter is that standard Q�

learning� the method suggested by Watkins �����	 and used extensively since� does not
provide the best convergence rates� In fact� in this chapter� a whole host of alternative
update rules have been suggested that empirically outperform it� This may be a quirk of
the Race Track problem� but in chapter � it is shown to be outperformed on the Robot
Problem and in Tham �����	 it is shown to be outperformed on a multi�linked robot arm
problem� Certainly� each task is similar� in that each is a control task requiring the system
to achieve certain goals� but it is this type of task for which the reinforcement learning
methods presented in this thesis are primarily intended�



Chapter �

Connectionist Reinforcement

Learning

One of the fundamental decisions for learning policies or value functions is how to store the
information that is gathered� This is especially true when continuous state�space problems
are considered� The ideal system must preserve all the salient information that has been
learnt� whilst generalising this information to other states in order to reduce the learning
time� These two aims con�ict� however� as generalising can lead to previously learnt infor�
mation being lost� and no generalisation to very slow convergence times� whilst explicitly
storing every piece of information gathered can lead to huge storage requirements�
In supervised learning tasks such as pattern classi�cation� it is usual to use a �xed

training set of data� which is presented to the function approximator repeatedly until it has
learnt the input�output mapping to the required accuracy� This introduces the possibility
of over��tting� which occurs if the function approximator learns atypical characteristics
of the training set thus reducing its ability to generalise to new data� In reinforcement
learning� this problem does not occur� as the training data is generated continuously by
actual experiences and usually only used once� This means that noisy� unusual features
are not presented to the function approximator repeatedly and so it will not over��t by
learning them� On the other hand� characteristics of regions of the state�space that are
not visited very often may be �forgotten�� precisely because they are not presented often
enough to the function approximator�
Another factor with reinforcement learning systems is that the required input�output

mapping is not known at the start of training� For example� the function approximator
may accurately predict low payo�s for the current policy� but the reinforcement system
will be using this information to change its policy in order to increase the payo�s� which
will change the required predictions� This means that early training data should eventually
be forgotten by the function approximator� as it will no longer be an accurate re�ection
of what the system knows�
This chapter starts by brie�y reviewing some of the function approximation techniques

available that are suitable for use in reinforcement learning� It is suggested that neural
networks� in particular multi�layer perceptrons �MLPs	� provide one of the most promising
general purpose methods currently available and so details of this type of function approx�
imator are discussed in the second section� Finally� methods for performing updates of
MLPs when using temporal di�erence learning algorithms are presented� which are useful
for implementing the Q�learning update rules discussed in the previous chapter� The two
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methods examined are backward�replay �Lin ����	 and on�line� updating�

��� Function Approximation Techniques

The requirements for a function approximator to be useful for reinforcement learning
systems operating in high�dimensional continuous state�spaces are�

� An on�line learning algorithm that can learn from individual training examples� as
opposed to requiring batches of data to converge�

� Good scaling with the dimension of the input vector�

� Ability to provide continuous outputs in response to continuous inputs�

� Generalisation of data to provide faster convergence of predictions for all points in
continuous state�spaces�

It is important to bear in mind that reinforcement methods are an iterative technique�
Although the system is trying to converge to an optimal value function and thus policy� the
output values of this function are not known in advance� This rules out learning methods
which base the update of the function approximator on calculations performed across a
�xed training data set�
MLPs ful�l all of the requirements set out above� especially when utilising the on�line

training algorithms introduced later in this chapter �section �	� However� other types of
function approximator have been used for reinforcement learning and some of these are
discussed below�

����� Lookup Tables

A lookup table was used in the Race Track experiments at the end of the last chapter in
order to store the Q�function values� and also to store a count of the number of times that
state�action pair had been visited �used in the calculation of the learning rate� �t	� When
dealing with an environment that can be broken into discrete states� such as described by
the Markovian formalisation� the lookup table provides the most obvious method� The
main disadvantage of this method is its huge storage requirements when the state�space
becomes large� and the fact that there is no generalisation between states and thus each
one must be visited repeatedly for the system to converge�
In a continuous state�space� a lookup table can still be used by partitioning the state�

space into separate regions and then associating each block of states with a lookup table
entry� This acts as a crude form of generalisation and its success will depend on how well
the function being learnt can be represented by a quantised state�space� Regions in which
the gradients 	V �x	
	x are high will not be well represented unless the space has been
divided up into small regions� Therefore� for greater accuracy� larger lookup tables are
required� which require more storage and so more updates to train� On the other hand�
using smaller lookup tables may speed convergence� but the function may not be stored
well enough to be useful for determining the optimum policy�

�On�line in this context means a method that allows the function approximator to be updated at each
time step� and so enables the system to operate continuously without requiring a separate learning phase
at the end of each trial�
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Lookup tables have been used extensively in the literature e�g� �Watkins ����� Barto
et al� ���� Sutton ����	� but always for problems with a low dimensional input due to
their poor scaling characteristics �as is discussed in section ����	�

����� CMAC

CMAC �Albus ����	 stands for Cerebellar Model Articulation Controller� and is a compro�
mise between a pure lookup table and a continuous function approximator� It is e�ectively
a set of lookup tables� with di�erent quantisation boundaries used by each� The usual
method is to use the same quantisation resolution for each table� but with the boundaries
of each table o�set from one another� Other options are possible� such as having di�erent
quantisation resolutions for each lookup table�
The �nal output of the CMAC is found by summing together the values found for the

current state from each of the lookup tables� This gives the generalisation advantage of a
coarse resolution lookup table� whilst still giving a �ne resolution for individual function
values� Hence CMACs can be used to provide generalisation in discrete state�spaces as
well as continuous state�spaces and so can be used in discrete problems to try to speed up
learning �Watkins ����	�
CMACs have been used successfully for reinforcement learning in some quite complex

continuous state�space problems� including a robot manipulator task �Tham and Prager
����	�

����� Radial Basis Functions

Certain radial basis function �RBF	 networks are closely related to CMACs and lookup
tables� where instead of simply storing a discrete table of values� a lattice of functions
such as Gaussians or quadratics is used� Each point in state�space receives a contribution
from each of these functions and these contributions are then summed to provide the �nal
output of the function approximator�

����� The Curse of Dimensionality

RBF lattices� CMACs� and lookup table techniques can all be incrementally updated with
on�line data and so are suitable for reinforcement learning problems� However� they all
su�er from the same problem � the so called �curse of dimensionality� � in that they
do not scale well to high dimensional input spaces� Consider a system with I inputs� It
might be decided that in order to provide the resolution needed to represent the function
mapping accurately� N basis functions in each dimension are needed� Therefore N I basis
functions would be required to represent the function across the whole state�space� It
can be seen that the number of individual basis functions �or entries in a lookup table or
CMAC	 rises exponentially with the dimension of the input vector�
The Race Track problem �section ��	 in the last chapter demonstrated how large the

storage requirements could be even for a simple learning task� The function approximator
used was a lookup table with one entry per state�action pair� Due to the fact that the
large race track occupied a grid of �� and that the robot could theoretically accelerate
to a velocity between �� in each direction� ��
���� states had to be allocated� With �
actions available per state� this meant that ��������� separate Q�function values had to
be stored� Thus it can be seen why a method such as one�step Q�learning� without using
TD��	 methods or generalisation� can be expected to take a very long time to converge�
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Figure ���� A neural network with � inputs� � hidden nodes� and � output nodes�

��� Neural Networks

An alternative to the function approximation methods so far described is neural net�
works� Neural networks are made up from interconnected units �often called perceptrons	
which each combine their inputs using a simple function to arrive at an output value� This
is then fed as an input to other units� or provides an output of the network as a whole
�see Fig� ��	�
These connectionist systems have the potential to be implemented in parallel hardware�

with the individual units working simultaneously� However� currently neural networks
are usually implemented on serial computers� which require that each unit is dealt with
sequentially� but this does not detract from their potential power for high speed parallel
computation�
One advantage over the function approximators discussed in the last section comes

from the fact that the size of the network is determined by the number of perceptrons
in the network� which is independent of the dimension of the input vector� So� if N
perceptrons are considered necessary for the function to be approximated well� and the
input vector has I components� then the network size is proportional to I �N �roughly
speaking� it depends on the exact architecture of the network	�
Neural networks can be used to approximate complex functions and provide generalisa�

tion� The disadvantage is that the generalisation can lead the networks to lose information
previously learnt� especially for regions of the state�space that are not visited and updated
regularly� It has been suggested that this problem could be dealt with by splitting the
state�space into regions with a di�erent neural network to learn the function in each re�
gion �Jacobs� Jordan and Barto ����� Jordan and Jacobs ����	� Gating networks are then
used to select which networks to use in each region� or even provide a weighted sum of the
outputs of the networks� In chapter � a similar idea is explored when the Q�AHC archi�
tecture is presented which combines real�valued AHC learning elements with a Q�learning
action selector� This selector therefore performs a similar function to the gating network
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mentioned above�
Neural networks therefore o�er a powerful method for function approximation and

hence in this thesis are examined in the context of storing information learnt by reinforce�
ment learning algorithms� The following sections give a more detailed overview of their
architecture�

����� Neural Network Architecture

The term neural network has come to represent a whole variety of architectures for func�
tion approximators� with the loose de�nition that they are all constructed from sets of
perceptrons which share inputs and outputs� The speci�c neural networks considered in
this thesis are the popular multi�layer perceptron �MLP	 or back�propagation network type
�Rumelhart et al� ���
	�
Each perceptron has multiple inputs oj and a single output oi which is calculated from

the inputs as follows�
oi � f��i	 ���	

where f��	 is a sigmoid function� and�

�i �
X
j

wijoj � bi ���	

where wij are the weights and bi is the bias weight� The inputs oj could be external inputs
to the neural network or outputs from units in the layer above� depending on the position
of this unit within the network� The sigmoid function is a non�linear S�curve� which can
be de�ned in several ways� for example by using a hyperbolic tangent function� In this
work� however� the following sigmoid function is used throughout�

f��	 �
�

� � exp��
��	

This gives an output approaching � if � is large and positive� and � if it is large and
negative� Thus a sigmoidal unit splits its input space by a hyperplane de�ned by the
weight settings� The output approaches � on one side and � on the other� with a smooth
transition in between�
The units are arranged in layers as shown in Fig� ��� with the output from each unit

in one layer being used as an input for each unit in the layer below� So� the �rst layer
extracts features from the network inputs� the second extracts features from the outputs
of the �rst� and so on down through the layers until the network outputs are reached�
More complex interconnections are possible� including direct links from the inputs to the
output units �bypassing the hidden layer units	� or feeding back outputs to previous layers
to give recurrent networks �Werbos ����� Williams and Zipser ����	�
The exact function performed by the network is dependent on the current weight values

at each unit� and it is by changing these values that the network can be trained to produce
a particular input�output mapping� The basic method is to compare the actual output of
the network with the required output and adjust the weights in order to reduce the error�
In order for the weights to converge to a good approximation of the function� repeated
updates must be performed� One such method is back�propagation� a simple gradient
descent rule that is discussed in section �����
Despite the fact that this thesis concentrates on only one type of neural network� the

multi�layer perceptron� with a speci�c architecture� there still remain a number of issues
pertaining to its use� which are brie�y explored in the following sections�



�� Connectionist Reinforcement Learning ��

����� Layers

It has been shown by several authors �Hornik� Stinchcombe and White ����� Cybenko
����� Funahashi ����	� that one hidden layer is all that is required for an MLP to approx�
imate an arbitrary function� However� the number of hidden units actually needed in this
hidden layer could be huge� For this reason� for some problems� two or more hidden layers
are a better option�
Unfortunately� increased numbers of layers create a problem for training algorithms

like back�propagation due to the manner in which the errors become attenuated as they
are passed back through the network� Also� as is discussed in the next section� there is
currently no ideal method to automatically determine the number of hidden units required
in a layer� so more hidden layers introduce more parameters to experiment with in order
to get the best results�

����� Hidden Units

As mentioned above� a single hidden layer network is potentially all that is needed to
approximate any input�output mapping� but this is dependent on the number of hidden
units used� The ideal is to use as few as possible� not only to reduce computation time
on serial computers� but also to improve the generalisation abilities of the network� This
is because the more units� and hence weights� that are available� the more degrees of
freedom the network has to approximate a given function� For networks trained using
a �xed training set� this can lead to solutions that work well for the training data� but
perform badly on more general test data� However� as discussed earlier� this problem is
not so important for reinforcement learning systems� which have access to a continuous
stream of new training examples� In experiments� it was found that �oversized� networks
did not e�ect the �nal performance of the system� but did result in longer training times
�both in terms of processing and number of updates required for convergence	�
Rather than �x the number of units in advance� methods of adjusting the number

of hidden units automatically �Reed ���� Hassibi and Stork ���� Lee� Song and Kim
����	 have been suggested� which involve trying to remove units which perform no useful
function� Ultimately� the requirement is for more sophisticated learning algorithms that
can be applied to arbitrarily large networks� and which only utilise as many units of the
network as are required to �t the function being learnt� Steps in this direction have been
made by considering Bayesian methods to select from the state�space of possible network
weights on the basis of probability distributions �Mackay ����� Neal ����	� However�
these methods have relied on second order calculations based on data gathered from �xed
training sets� which are not suitable for use with on�line reinforcement methods�

����� Choice of Perceptron Function

For MLPs with several layers of units� each using the same non�linear function� sigmoidal
units are the type that have been studied extensively �and thus are used in this work	�
However� it should be noted that alternative functions could be used�
For example� consider a function to be approximated which is zero everywhere apart

from a �bubble� of points of value �� To de�ne this region using the hyperplanes produced
by sigmoidal units would require surrounding it with planes� For this case� a more localised
function would be appropriate� such as a Gaussian� For this reason� various alternatives
have been suggested� for example RBF units �discussed in the context of a �xed lattice in
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section ���	� However� in these cases� it is usual for only one layer of units to have the
specialised function � the output units simply perform a weighted sum of the outputs
from the functions�

����� Input Representation

The choice of representation of the input vector x to the network is obviously very im�
portant� as it de�nes one half of the input�output mapping that is to be learnt� Usually�
the more useful pre�processing that is done� the less complex the function mapping that
needs to be learnt�
Hence� in the Robot Problem in the next chapter� the state�space is de�ned by a set

of continuous variables� but they are not simply presented to the network directly� This
is because a real�valued input may require very di�erent responses over di�erent ranges�
which will take several sigmoids to model if the network must base this information on one
input� Therefore� it was chosen to spread each real�value across a number of inputs using
a coarse coding technique� This means that each input is more sensitive to the value when
it is a particular range and thus the network can more easily model discontinuities in the
function mapping to be approximated� The exact coarse coding method used is described
in Appendix A�

����� Training Algorithms

The method used to select the weight changes within the network is critical to its training
speed and also to the quality of the �nal solution arrived at� As yet� there is no clear
optimal algorithm� and many di�erent methods have been proposed �for an overview� see
Jervis and Fitzgerald ����		� These fall into two main categories�

� Batch or o��line

� On�line

In the �rst category� updates to the weights are only made after a number of input�output
pairs have been presented to the network and the errors have been seen� A calculation is
made based on this set of input data to try to �nd an optimal change in weights to reduce
the overall observed error in the output� This is usually used where a �xed set of training
data is available� in which case the weights are only updated after the whole set has been
presented to the network�
With on�line learning� the weights are updated after each individual input�output pair

is presented� This is more suitable for systems where data is arriving continuously� and
the desire is to learn from the data and then discard it� Therefore� this is the style of
learning required in reinforcement learning systems� where there is no �xed training set�
as the value functions are evolving as the system learns more about its environment� This
rules out many of the more sophisticated training methods �e�g� Moller ����	� Mackay
�����		 which rely on estimations made about the global error surface with respect to the
training set�
Furthermore� in reinforcement learning problems� where the desire is to create au�

tonomous systems that can operate in real�time� it is preferable that the training method
for the networks should not interfere with their inherent parallelism� For this reason� local
adaptive techniques are desirable which update the weights of each perceptron separately�
rather than requiring global calculations based on the entire state of the network �not
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least because of the computational expense involved	� A comparison of some of the local
methods available can be found in Riedmiller �����	�

����� Back	Propagation

In the following work� the back�propagation algorithm �Rumelhart et al� ���
	 was used
due to the fact that it is a local update rule that can be applied on�line� and also because
it could be accelerated by combining it with TD��	 methods �section ���	� as is shown in
the next section�
The algorithm is a gradient descent rule� Thus it seeks to minimise the output error

by moving the weights in the direction indicated by the partial derivatives 	E
	wij� E is
the sum squared error�

E �
�

�

X
i

�ti � oi	
� ���	

where oi is the actual output of unit i and ti is the required �target	 output� So for units
in the output layer�

	E

	wij
� �ti � oi	f

���i	oj ���	

where f ���	 is the �rst derivative of the sigmoid function with respect to �i� The weight
wij can then be updated using�

wij � wij � �
	E

	wij
��
	

where � is the learning rate parameter�
For units in the �rst hidden layer the partial derivative is�

	E

	wjk
�

�X
i

�ti � oi	f
���i	wij

�
f ���j	ok ���	

which includes the summation of gradients 	E
	oj for each of the output units� and hence
the term back�propagation� as gradient information is propagated through the network
from output to input� This can be repeated for as many layers as the MLP possesses�

����
 Momentum Term

A simple method to accelerate the convergence rate of learning for MLPs is to use a
momentum term� Instead of using only the current error gradients in order to calculate
the amount of change that should be made to each network weight� a weighted sum of the
most recent gradients may give a better indication of how to change the weights� Thus
the weight updating equation becomes�

mij � �mij � �
	E

	wij
���	

wij � wij �mij ���	

where � � � � � is the weighting parameter which controls how much the gradients are
averaged over time� In practice� quite high values of � seem to give the best convergence
times�
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In the next section� temporal di�erence methods using MLPs are presented� where
the weight change at each time step is calculated using the eligibility trace mechanism�
This will be seen to result in an update mechanism very similar to the momentum term�
except that it uses a weighted sum of the output gradients 	oi
	wij rather than the error
gradients�

��� Connectionist Reinforcement Learning

In the preceding sections� function approximation techniques that are suitable for re�
inforcement learning have been discussed� They all have the quality that they can be
incrementally updated in response to each new piece of data� which is a prerequisite for
on�line reinforcement learning methods� Of the methods presented� MLPs have the ad�
vantage of being continuous function approximators that scale well to high�dimensional
inputs� In addition� they generalise the information learnt and can be implemented in
parallel hardware�
In fact� MLPs have already been used to learn the value function in a very large discrete

state�space problem � that of playing back�gammon � and were able to learn to play to
grand�master level �Tesauro ����	� This required a very large input vector to represent
the current state of play and so approximating the function using lookup table or CMAC
methods would have been impractical�
In the remainder of this chapter� methods are examined for applying Q�learning up�

dates utilising MLPs as function approximators� Unlike previous work in this area �Lin
���b	� the algorithms presented here can be applied on�line by the learning system� This
results in a reinforcement learning system which ful�ls the following goals�

� On�line training for autonomous systems�

� No world model is required�

� E�cient scaling to high�dimensional inputs�

� Generalisation for large and continuous state�spaces�

� Potential for implementation using parallel hardware�

The next sections introduce the general on�line temporal di�erence update algorithms and
the remainder the speci�c Q�learning algorithms�

����� General On	Line Learning

In chapter �� a temporal di�erence prediction problem was discussed� where a sequence of
predictions Pt were made of a generalised return� This assumed that a single prediction
was made at each time step� which could then be updated using the temporal di�erence
algorithm� In this section� the same general temporal di�erence problem is again consid�
ered� but with the further extension that at each time step a set of predictions Pt are
made� Although the following discussion assumes that the predictions are made by an
MLP with multiple outputs� it is valid for any function approximation technique where
multiple predictions are made at each time step�
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�� Reset all eligibilities� e� � ��
�� t � ��
� Produce a set of predictions Pt�
�� Select one prediction to use� Pt�
�� If t � ��

wt � wt�� � �ct�� � �tPt � Pt��	et��
�b� Recalculate selected output Pt�

� Calculate rwPt w�r�t� the selected output Pt only�
�� et � �t�et�� � �trwPt
�� If trial has not ended� t� t � � and go to step �

Figure ���� The on�line update algorithm for the general TD�algorithm� for the case where a
set of predictions are made� Pt� Step �b is shown for the corrected output algorithm�

The basic algorithm for applying TD�learning techniques to train an MLP can be found
in Sutton �����	� Each weight in the network maintains its own eligibility traces�

eij � ���t	eij � �t
	Pt

	wij
����	

to keep track of a weighted sum of previous output gradients� 	Pt
	wij represents the
vector of output gradients� with one element per network output� so each weight wij has
a vector of eligibilities associated with it� This ensures that the error in each output
a�ects only the weights that directly caused it� rather than those that have built up a
high eligibility due to their contribution to other outputs� Hence the algorithm is suitable
for the general case of a multiple output network which has di�erent prediction errors at
each of its outputs�
This algorithm has not been widely used� with Tesauro�s TD�Gammon work being

one of the few applications� This is because for algorithms that require more than one
output� it appears that multiple eligibilities are required per weight� with the resulting
performance and storage hit this would incur compared to normal back�propagation�
However� in this work� the systems considered are those where all the outputs of the

network are predictions of the expected return available �e�g� the action values in Q�
learning	� At each time step� only one of the outputs is selected for use as the current
prediction Pt and so this will be the only one which is updated by future TD�errors�
Therefore the output gradient rwPt is only calculated with respect to the output that
produced this prediction�
The important result of this is that each weight need only maintain a single eligibility

trace eij per weight wij � as only one output gradient needs to be stored per time step� This
is regardless of the number of outputs of the network� so long as only one is selected for
updating per time step �see Appendix B	� This fact leads to the on�line update sequence
shown in Fig� ���
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Eligibility and Momentum Terms

Writing the update for a single weight in terms of the network output oi that produced
the selected prediction� gives�

eij � ���t	eij � �t
	oi
	wij

����	

wij � wij � Eeij ����	

where E is the current TD�error� which is equivalent to �ti � oi	 for the particular output
i that produced the prediction Pt� This form of the equations can be compared with those
presented for the momentum term �section ����	� It can be seen that the di�erence is that
the eligibility keeps a weighted sum of the output gradients� whilst the momentum term
keeps a weighted sum of the error gradients� This di�erence changes the characteristics of
the two algorithms� as it means that the momentum term operates to smooth the change
each output error will make� whilst the eligibility controls the magnitude of the change
each output error will make�
Both algorithms can in fact be implemented on a computer using a single pair of

update functions� one to update the eligibility�momentum term� zij � the other to update
the weight� wij �

zij � tzij � �t
	oi
	wij

Zi ���	

wij � wij �Wzij ����	

where the settings of t� Zi and W control the operation of the functions� Comparing the
above equations with those in section ����� it can be seen that to perform momentum
term updates t � �� Zi � �ti�oi	� and W � �� For eligibility updates� t � ���t	� Zi � �
for the selected prediction output i and � for all others� and W equals the TD�error�

����� Corrected Output Gradients

The whole idea behind the methods presented in this section is that they should be applied
on�line for updating MLPs� This means that when the network weights are updated in
stage � of the algorithm �see Fig� ��	� the output of the network is altered slightly from
the value Pt that will be used to calculate the TD�error at the next time step t � ��
Consequently� the system should really get the new ��corrected�	 value of Pt to calculate
the TD�error� and also calculate the output gradients rwPt with respect to this new
prediction of return� However� to do this incurs the computational expense of a second
pass through the network which produced the selected prediction Pt� The extra stage is
shown as stage �b in Fig� ���
The convergence proof of Jaakkola et al� ����	 showed that TD�learning was still

guaranteed to converge when on�line updates are made� as� in the limit� the e�ects of
using the uncorrected outputs are not signi�cant� Although this result applies to the case
where a linear function approximator is used� it is conceivable that the same e�ect would
also occur when other types of function approximator are used� In the next chapter�
experiments are performed to test this hypothesis for on�line MLP updating�
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�� Reset all eligibilities� e� � �
�� t � �
� Select action� at
�� If t � ��

wt � wt�� � ��rt�� � �Qt �Qt��	et��
�� Calculate rwQt w�r�t� selected action at only�

� et � ��et�� �rwQt

�� Perform action at and receive payo� rt
�� If trial has not ended� t� t� � and go to stage �

Figure ���� The on�line Q�learning update algorithm� The update in stage � is shown for
Modi�ed Q�Learning�

����� Connectionist Q	Learning

In order to represent a Q�function using neural networks� either a single network with jAj
outputs can be used� or jAj separate networks� each with a single output� The algorithms
presented in the next section can be applied to either architecture�
Lin �����	 used the one�step Q�learning equation ���� to update the MLP weights

wt� calculating rwQt using back�propagation� In Lin ����b	� he went on to introduce
a connectionist method for performing standard Q�learning using temporal di�erence up�
dates with � � �� However� Lin applies the standard Q�learning equation ���� using the
following algorithm��

�wt � ��Q�
t �Qt	rwQt ����	

where�

Q�
t � rt � �

�
��� �	max

a�A
Qt�� � �Q�

t��

�
���
	

From equation ��
 it can be seen that each Q�
t depends recursively on future Q

�
t values�

which means that updating can only occur at the end of each trial� Until then� all state�
action pairs must be stored and then presented in a temporally backward order to propagate
the prediction errors correctly� This is called backward�replay�
To implement standard Q�learning� it is necessary to use a value of � � � whenever

the non�greedy action has been performed �this is the equivalent of zeroing the eligibility
traces when on�line updates are being made	� It is worth noting� however� that Lin�s
backward�replay equations ����� ��
	 with a constant � are in fact an implementation
of Q��	 �section �����	 and not of standard Q�learning with non�zeroed eligibilities �the
algorithm referred to as Fixed Q�learning in the previous chapter� see section ����
	�
To implement Modi�ed Q�Learning using backward�replay� the max operator is dropped

from equation ��
 and a constant � is used�

On�line Q�Learning

In this section� the algorithms are presented required to apply Q�learning updates using
the on�line connectionist learning equations introduced in section ����

�This is also the algorithm used by Thrun in his work on connectionist Q�learning e�g� 	Thrun �

���
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�� Reset all eligibilities� e� � ��
�� t � ��
� Select action� at�
�� If t � ��

wt � wt�� � � ��rt�� � �maxa�AQt � Qt��	rwQt���
�rt�� � �maxa�AQt �maxa�AQt��	et���

�� et � �� �et�� �rwQt��	

� Calculate rwQt w�r�t� selected action at only�
�� Perform action at and receive payo� rt�
�� If trial has not ended� t� t � � and go to stage �

Figure ���� The on�line update algorithm for Q����

The full on�line Q�learning algorithm is shown in Fig� � �note that it is not shown
for the case of corrected outputs discussed in section ���	� It involves back�propagating
to compute the output gradients rwQt for the action chosen� and hence updating the
weight eligibilities� before the action is actually performed� At the next time step� all of
the weights are updated according to the current TD�error multiplied by their eligibilities�
Therefore� the only storage requirements are for the MLP weights and eligibilities� and
the last selected action value� Qt� and payo�� rt�
The important point is thatrwQt is only calculated with respect to the output produc�

ing the action value for the selected action at� Hence� if the Q�function is being represented
by jAj separate single output networks� then rwQt is zero for all weights in networks other
than the one associated with predictions of return for action at� So the eligibilities for
these networks are just updated according to�

et � ���	et�� ����	

In other words� the eligibility of the entire network decays for steps when the action
associated with it is not selected� However� at every time step� all the networks are
updated in stage � of Fig� � according to the current TD�error � it is the eligibilities
which determine how much the individual weights will be a�ected�

On�line Connectionist Q��

To apply on�line Q��	 updates requires a slightly modi�ed algorithm� which results in
the update sequence shown in Fig� ��� Note the change in order of stages � and 
�
This actually has an important consequence� as it means that the current network output
gradients rwQt must be stored between time steps� The reason for this is that the
gradients from the previous step� rwQt��� are required to be separate from the eligibilities
et�� when the update is performed in stage �� In the update sequence for standard and
Modi�ed Q�Learning �Fig� �	� they are combined in stage 
 of the previous time step
to produce the current settings for the eligibilities and so only the eligibilities need to be
stored between time steps�
The on�line Q��	 algorithm is therefore not only slightly more computationally ex�

pensive than standard Q�learning and Modi�ed Q�Learning �due to the complexity of the
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update in stage �	� but also requires storage for the output gradients� rwQt� as well as the
network weights and eligibilities� This represents a �� increase in storage requirements
per network�

��� Summary

A number of di�erent function approximation methods have been discussed in the context
of their usefulness for reinforcement learning� It has been suggested that multi�layer per�
ceptron neural networks provide the range of features required for reinforcement learning
systems to operate in high�dimensional continuous state�spaces� and some of the issues
surrounding their use have been examined�
In particular� a method for applying on�line temporal di�erence updates has been

examined� It has been shown that in the case where multiple predictions are made at
each time step and only one is selected for updating� then only a single eligibility trace
per weight is required� Based on this� Q�Learning algorithms have been presented to use
MLPs to store the Q�function which can be updated on�line during trials� This removes
the necessity to store state�action pairs until the end of trials and then perform an o��line
learning phase� as is required by the backward�replay method suggested by Lin ����c	�



Chapter �

The Robot Problem

In chapter � a number of di�erent Q�function update rules were introduced and their
performance compared on a discrete Markovian problem� In chapter  methods for using
MLP neural networks as function approximators were presented� In this chapter� these
methods are used to provide a reinforcement learning solution to a robot navigation task
that takes place in a large continuous state�space�
There are three aims in this chapter�

� to compare the on�line temporal di�erence learning algorithm for training neural
networks with the backward�replay method�

� to provide a further comparison of the convergence rates and robustness to learning
parameter choices of standard Q�learning� Q��	 and Modi�ed Q�Learning updates�

� to demonstrate that MLP networks used with reinforcement learning methods can
produce high quality solutions to di�cult tasks�

This �nal point is important� as there is little point in worrying about the details of rein�
forcement learning algorithms if they cannot be used e�ectively for dealing with di�cult
engineering problems� Robot navigation tasks are a popular topic in the AI and control
literature and many solutions have been proposed using methods developed in these �elds
�Kant and Zucker ���
� Khatib ���
� Barraquand and Latcombe ����� Agre and Chapman
����� Schoppers ����� Ram and Santamaria ���� Zhu ����	� However� it is shown here
that a reinforcement learning system can train a controller which can deal with general
obstacle layouts� new environments� and moving goal positions� without the need for the
designer to do anything more than provide a set of sparse payo�s to de�ne the problem�

��� Mobile Robot Navigation

The problem of navigating a mobile robot in a �D environment has been tackled by many
di�erent methods in recent years� Much of this work has concentrated on path planning�
where a fully known state space is analysed to �nd a suitable path� Such methods include
calculating potential �elds that repel the robot from obstacles and attract it towards the
goal �Khatib ���
� Barraquand and Latcombe ����	 and discretising the state space in
order to perform rapid searches for obstacle free paths� The problem with these methods
is that they require complete prior knowledge of the obstacle con�guration in order to
calculate a path� and hence recalculation is necessary if this con�guration is changed in

��
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any way� Also� the paths generated take no account of the robot dynamics� so a second
calculation is required to work out the control actions needed to keep the robot on the
pre�planned path� All these calculations must occur before the robot makes a single
movement�
In contrast� reactive controllers use only the currently perceived situation to decide

their next action� As each action is executed� the robot must re�evaluate the position it
�nds itself in and use this information to decide on its next action� This process is repeated
until the robot reaches the goal� Knowledge based systems �Agre and Chapman �����
Schoppers ����	 and Brooks� subsumption architecture �Brooks ���
	 rely on previously
de�ned rules and behaviours to decide on the appropriate actions at each step� This means
that the designer must take into account the dynamics of the robot in deciding on the
rules available to the system� and so the solutions must be tailored to the speci�c robot
in question�
This is exactly the kind of task that can bene�t from continuous state�space rein�

forcement learning techniques� The advantage of these methods is that the system learns
to achieve its goal using whatever information and actions are available�� Consequently
dynamic constraints and limitations in sensory input are automatically dealt with by the
most e�ective policy learnt by the system�
Prescott and Mayhew �����	 present such a system� using an adaptive heuristic critic

method �see section ���
	� but it is not goal based i�e� it avoids obstacles� but not in order
to get to a target location� Millan and Torras �����	 demonstrate a robot controller that
avoids obstacles to get to a goal� but their system receives potential �eld like payo�s from
all objects at every time step �therefore requiring the positions of all objects to be known	�
In both cases� the systems are trained on a single obstacle layout�
Here the task of using reinforcement learning to train a robot with limited range sensor

inputs �as for Prescott ! Mayhew	 on a goal based problem is considered� where the robot
only receives a payo� at the very end of the trial� In addition� the start� goal and obstacle
positions are changed after each trial� ensuring that the robot has to learn a generalised
reactive policy in order to deal with the situations that it might encounter�

��� The Robot Environment

The robot navigation system described is a computer simulation� The robot has �ve
range �nding inputs which are spaced across the robots forward arc from ��� to ���

at ��� intervals �see Fig� ���	 and give it accurate distance measurements to the nearest
obstructions� It also always knows the distance and angle to the goal relative to its
current position and orientation� The environment as seen by the robot is therefore a
high�dimensional �seven separate real�valued inputs	 continuous state�space�
The world the robot occupies is a square room� with randomly placed convex polygonal

obstacles in it� The robot starts at a random position with a random orientation and has
to reach the goal� which is also at a random position�
The robot moves by selecting from a discrete set of actions �see section ���	� It does

this until an action results in a collision with an obstacle� arriving at the goal� or a time�out
�the robot only has a limited number of steps in which to reach the goal	� The trial then
ends and the robot receives a payo� based on its �nal position as described in section ����
The layout of the room is then completely randomised and the robot starts a new trial�

�As will be demonstrated in this chapter when a robot with an unreliable sensor is considered�
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Figure ���� What the robot knows about its surroundings

Consequently� the only information that the robot has as to the quality of its actions is
the �nal payo� it is given� and what it has learnt from previous trials�

��� Experimental Details

In the following results� the e�ects of applying the following three Q�learning update rules
are compared�

� Standard Q�learning �section �����	�

� Q�� �section �����	�

� Modi�ed Q�Learning �section �����	�

These rules were discussed in chapter �� where it was shown that standard Q�learning
provided convergence rates that were lower than could be achieved using Modi�ed Q�
Learning or the Q��	 method� The Summation Q�Learning family of update rules are not
considered here� as they were shown in chapter � to be at best only as good as Modi�ed
Q�Learning� and to be more computationally expensive�
In addition� the e�ect is examined of applying these updates using both the backward�

replay and on�line algorithm �section ��	 presented in the last chapter�
The simulated robot was trained with 
 actions available to it� turn left ���� turn right

���� or keep the same heading� and either move forward a �xed distance d� or remain on
the same spot� This meant it had one action � namely not moving or changing heading
at all � that was never useful in achieving its objective of reaching the goal�
The robot received an immediate payo� of rt of zero for every state except the �nal

state reached at the end of the trial� The �nal payo� received depended on how the trial
concluded�
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Goal If the robot moved within a small �xed radius of the goal position� the payo�
received was ��

Crash The robot received a payo� based on its distance from the goal� dgoal� when it
crashed i�e�

r�nal � ��� exp���dgoal
dsize	

where dsize was the length of one wall of the square room�

Time�out If the trial timed�out �in the results presented in this section� this was after
��� steps	� the robot received the same payo� as for a crash� but with a ��� bonus
for not crashing�

It should be noted that the payo� for crashing was chosen in a fairly arbitrary way to
give a higher payo� for ending up nearer to the goal and a maximum payo� of only ����
In fact� the whole payo� function was chosen based on intuitive arguments � no payo�s
were given during the trial to avoid interfering with the policy found by the system and
higher �nal payo�s were given for more desirable trial endings�
The discount factor� �� was set to ����� which gives a higher weighting to actions that

lead to the goal in the fewest steps�
In this work� as in Lin �����	� separate single�output MLP networks are used to predict

the Q�x� a	 of each action� rather than a single monolithic network with multiple outputs��

Thus� the Q�function was represented by 
 separate neural networks� one for each available
action� Each network had �
 inputs�  hidden nodes� and a single output� and used
sigmoidal activation functions of the form f��	 � �
�� � e��	� This meant that the
output of the networks was in the range ��� �� and is the reason why the end of trial payo�
lies in this range� The network weights were initialised with random values in the range
����� The �
 inputs were due to coarse coding the � real valued sensor values using several
input nodes per value � for each of the � range sensors� � for the distance to goal� and 

for the angle to the goal� see Appendix A for exact details	� The coding was chosen such
that the range sensor inputs would only be sensitive to ranges of around half the width of
the room� This was intentional and designed to simulate limited range sensor information�
A Boltzmann function was used to provide a probability distribution for exploration�

where�

P �ajxt	 �
exp�Q�xt�a��TP
a�A exp

�Q�xt�a��T
����	

It is common to allow the exploration value T to start quite large and reduce as the
number of trials goes by �as was done with the Race Track problem	� Judging the rate of
�annealing� in this way is a matter of trial and error� In this research� it was found that
a value of ���� for T in the early stages of learning� and of ���� by the end� provided the
necessary trade�o� between exploration and exploitation of the Q�function� In the results
presented� the T value was reduced linearly between these two values over ������ trials�
At the start of each trial� the layout of the room was randomised �described in Ap�

pendix A	� Thus� the robots saw a steady stream of new situations and so could not learn
a policy which was useful only for a speci�c obstacle layout� This allowed a trained robot
to cope with situations that it had never seen before� including dealing with moving goals
and some concave obstacles� However� it should be noted that in the following results� the

�Separate networks avoid the weights of hidden units receiving con�icting demands from di�erent
outputs�
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Training method Successful robots Updates taken Trial length
�from 
	 �millions	 �steps	

Standard �� �� ���

Q��	 �� ��� ���

Modi�ed �
 �� �


Table ���� Backward�replay results� Summary of successful robots �those averaging greater
than 
��� average payo� over the last ��


 training trials�� from the �� di�erent � and �

combinations� Columns show number of updates made over the trials and the average number
of steps required to �nd the goal by the end�

Training method Successful robots Updates taken Trial length
�from 
	 �millions	 �steps	

Standard � �� ����

Q��	 �
 ��� 
��

Modi�ed �� ��� ���

Table ���� On�line update results� Summary of successful robots �those averaging greater 
���
average payo� over the last ��


 training trials�� from the �� di�erent � and � combinations
using on�line updates�

sequence of rooms generated was the same for all robots to enable a sound comparison
between them�

��� Results

There are several parameters that must be set during training� The values used for the
discount factor � and the exploration value T have been described in the previous section�
These were chosen after a small amount of experimentation� but no attempt was made to
�nd optimal values �e�g� a faster reduction in T can speed up convergence to a solution	�
This leaves the training rate � and the temporal di�erence parameter �� which were
found to have a signi�cant e�ect on the ability of the neural networks to learn and the
quality of the solutions achieved� Therefore� rather than performing multiple trials at
�xed values� of � and � the methods were tested over a range of values� so that an
idea of the relative performance of the di�erent methods� and their sensitivity to the
training parameters� can be gained� The results are presented using contour plots for
values of � � f���� ���� ���� ���� ��� ���g and � � f���� ����� ���� ����� ����� ���g� which show
the average level of payo�s received by the systems over their �nal ����� trials� These
plots are meant to provide a visual guide as to the quality of solutions produced by a
particular method� The fact they are constructed by interpolating between the 
 data
points should be remembered when interpreting them�
The �rst results compare the performance of the three update rules when the backward�

�However� such a test was performed to discover if di�erent sequences of rooms and initial network
weights had a signi�cant e�ect when all else remained the same� It was found that the average payo�
received over the �nal �� trials of a run had a standard deviation of only �� across � runs using the
same value of � and ��
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replay method was used� This required the storage of all state�action pairs until the end of
each trial �so� for a time�out� ��� steps needed to be recorded and then replayed to update
the networks	� The contour plots in Fig� ��� show the variation in average payo�s received
by robots after being trained on ����� randomly generated rooms using backward�replay�
Also shown is an example of the typical learning curves associated with each update rule
for robots that learn to reach the goal consistently� It is worth remembering that the
exploration factor T has reached its minimum value of ���� at ������ trials�
The contour plots show that the performance of the di�erent update methods is very

good over a wide range of training parameter values� The plots in Fig� �� show the
results when the on�line temporal di�erence updates are used instead� For this method
of updating� it is only necessary to store the previous action value prediction in order to
calculate the current TD�error� The updating of the networks is complete as soon as the
�nal payo� has been received and used to provide the �nal weight update� As can be seen
from the contour plots� the performance is very similar to that of the robot controllers
produced by using the backward�replay method� In fact� if only the most successful robots
are considered �those that average over ���� payo� across their �nal ����� trials�	� then
Tables ��� and ��� show that the on�line training method has resulted in a slightly higher
number of successful controllers� In addition� the on�line systems reach the goal in fewer
steps than used by the backward�replay systems�
The second point that can be seen from Tables ��� and ��� is that for both on�line and

backward�replay methods� the Modi�ed Q�Learning updates have resulted in the greatest
number of successful robots� trained in the fewest number of updates� and requiring the
lowest number of steps to reach the goal� Q��	 comes second in all categories� with
standard Q�learning just behind�
The number of updates taken in ����� trials varies considerably between the  di�erent

Q�learning methods� Fig� ��� shows the same graphs used in Fig� ��� but with the x�axis
scale in terms of updates rather than number of trials� As can be seen� the Modi�ed
Q�Learning trained robots have converged to a solution in well under a million updates�
compared to over � million for Q��	 and � million for standard Q�learning�
To put this in perspective� the contour plots in Fig� ��� represents the average payo�s

received by on�line Modi�ed Q�Learning and Q��	 trained robots after � million appli�
cations of the update rule� The contour plot for standard Q�learning is not shown as it
is blank i�e� no combination of � and � has led to a robot that averages a payo� over
���� �the lowest contour plotted	 after � million updates� Meanwhile� Q��	 updates have
resulted in only �� robots achieving average payo�s of over ����� which occur when the
high values of � of ���� and ���� are used�
The rate of convergence of Q��	 as � increases can be seen more clearly in Fig� ����

which also shows the graphs for the corresponding Modi�ed Q�Learning systems� As can
be seen� the change for Q��	 is much more pronounced� with the curve for low values of �
being more similar in shape to those produced by standard Q�learning systems �e�g� the
top right graph in Fig� ��	� whilst the high values of � result in curves that are more
like Modi�ed Q�Learning� This is no surprise� as Q��	 with � � � is exactly the same
as one�step Q�learning� whilst at high values of �� the sum of truncated returns will be
increasingly similar to those seen by Modi�ed Q�Learning �see equations ��� and ���	�
Therefore� on the evidence of this section� it appears that on�line updates are at least

as good as backward�replay ones� if not slightly better� and that Modi�ed Q�Learning
updates provide the best trained robot controllers in the fewest updates� However� the

�This level of payo� requires in the region of 
�� of trials ending with the robot reaching the goal�
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Figure ���� Backward�replay results� Left� Contour plots showing how the �nal payo� after
�
�


 trials varies for each of the three update rules applied using di�erent values of � and
�� Right� Sample training curves taken for each update rule� corresponding to the value of �
and � marked by a � on each contour plot� The dotted line is the normalised average number
of steps taken in each trial �maximum trial length was �

 steps��
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Figure ���� On�line results� Left� Contour plots showing how the �nal payo� after �
�



trials varies for each of the three update rules applied using di�erent values of � and �� Right�
Sample training curves taken for each update rule� corresponding to the value of � and �

marked by a � on each contour plot� The dotted line is the normalised average number of
steps taken in each trial �with ��
 corresponding to �

 steps��
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updates rather than trials� Bottom� The contour plots for on�line Modi�ed Q�Learning and
Q��� shown after one million updates�
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Training method Successful robots Updates taken Trial length
�from 
	 �millions	 �steps	

Standard � � �

Q��	 � �� ���


Modi�ed � ��� �
�

Table ���� Backward�replay results with damaged sensors� Summary of successful robots
�those averaging greater than 
��� average payo� over the last ��


 training trials�� from ��
di�erent � and � combinations�

Training method Successful robots Updates taken Trial length
�from 
	 �millions	 �steps	

Standard � ��� ����

Q��	 � �� ����

Modi�ed �� ��� �
��

Table ���� On�line updates with damaged sensors� Summary of successful robots �those
averaging greater than 
��� average payo� over the last ��


 training trials�� from �� di�erent
� and � combinations�

di�erence in performance between the methods recorded in Tables ��� and ��� is quite
small and so in the next section results are presented for a slightly modi�ed and more
di�cult version of the robot problem�

����� Damaged Sensors

The results in the last section demonstrate that training a high quality reactive robot
controller using reinforcement learning is quite straightforward and works for a wide range
of training parameters� It also gives the impression that any of the Q�learning update rules
will work equally well� However� earlier results presented in Rummery and Niranjan �����	
for this problem showed a wider variation in performance� This di�erence arises because
in the previous work the coding for the state vector xt was di�erent to that used for the
robots in the preceding section�
To be precise� in the last section� the coarse coded input for the relative angle of the

goal to the robot came from the following�

� � mod��� �	 ����	

where � � � � �� is the absolute angle to the goal� � � � � �� is the absolute facing
of the robot� and the function mod��	 adjusts the calculated relative angle � to also lie
in the range ��� ���� However� in the results presented in Rummery and Niranjan �����	�
the mod��	 operation was not performed and thus it was possible for � to lie outside the
range ��� ��� if � � �� This makes the state�action mapping for the Q�function signi�cantly
harder to learn� as a single relative angle� � � �� � ��� can be represented by � as either
�� or �� � �� depending on the absolute angles �which are unknown to the robot	� As
the coarse coding was designed assuming � would lie in range ��� ���� this means that the
negative values lie outside of this region and are thus represented by very similar input
vectors�
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However� the results obtained with this �damaged� sensor are interesting� as the robot
controllers produced� whilst not as good in general as those achieved in the last section�
still result in some robots capable of reaching the goal successfully �� of the time �see
section ����	� Therefore� the results for this system are presented in this section� as this is
a signi�cantly harder reinforcement learning task and shows up the di�erences in perfor�
mance of the learning rules more sharply than the results presented in the previous section�
It also demonstrates the power of reinforcement learning to overcome such problems�
One of the �rst consequences of the damaged sensor is that convergence takes longer�

Improvements to the policy still occur after the exploration value T has reached its min�
imum value of ���� after ������ trials� Thus� in the results presented� ������ trials were
used to train each robot�
Fig� ��
 is the equivalent of Fig� ��� for the case where backward�replay methods are

used to perform the network updates� The di�erence is striking� and� as Table �� shows�
suggests that the incorrect goal angle input has virtually destroyed the ability of the system
to converge to good solutions� The performance is very sensitive to the choice of learning
parameters � and �� with standard Q�learning producing no truly successful robots�
In contrast� the contour plots for on�line updating �Fig� ���	 show far less sensitivity to

the choice of learning parameters� As can be seen from Table ���� the number and quality
of the successful robots is greatly increased� The best results are for Modi�ed Q�Learning
trained robots using on�line updates� The results are not of the same standard as for the
correct angle input �Fig� ��	� but as a comparison of Table ��� and Table �� shows� they
are signi�cantly better than achieved by the backward�replay method on the damaged
sensor task�
A close look at the policy learnt by the successful systems shows that the solution

arrived at by the reinforcement learning system is to keep the goal slightly to the left
of the current facing of the robot at all times i�e� in the region where � � � and thus
the relative angle �� is positive and represented unambiguously by the calculated relative
angle � �see the maps in Fig� ����	�

����� Corrected Output Gradients

In section ��� of the previous chapter� the issue of the output gradients used by the on�
line neural network updating method was discussed� As described� the di�culty is that
the network producing the selected action value� Qt� is updated by the current TD�error�
and thus its prediction and output error gradients rwQt are altered� In order to �correct�
them to values re�ecting the current weight settings� another forward pass is required�
However� it was questioned whether the correct output and gradients are really re�

quired� a forward pass through an MLP requires a lot of computation� even for a small
network� and so introducing an extra one into the on�line updating sequence is undesir�
able� In the results presented so far� this correcting pass was not performed� To evaluate
its e�ect results are presented in this section for on�line Modi�ed Q�Learning where it has
been used�
The contour plots are shown in Fig� ��� and Table ��� presents the results for the

successful robots� There is quite an improvement in performance on the problem with
the damaged sensor input�	 The main area of improvement is in the region where the
learning rate � is high� which is where the greatest changes between the outputs before

�Which would be even better if it were not for a particularly bad result at � � ��� � � ����
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Figure ���� Backward�replay with damaged sensors� Left� Contour plots showing how the �nal
payo� after �
�


 trials varies for each of the three update rules applied using di�erent values
of � and �� Right� Sample training curves taken for each update rule� corresponding to the
value of � and � marked by a � on each contour plot� The dotted line is the normalised
average number of steps taken in each trial �with ��
 corresponding to �

 steps��
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Figure ��� On�line updates with damaged sensors� Left� Contour plots showing how the �nal
payo� after �
�


 trials varies for each of the three update rules applied on�line for di�erent
values of � and �� Right� Sample training curves taken for each update rule� corresponding to
the value of � and � marked by a � on each contour plot� The dotted line is the normalised
average number of steps taken in each trial �with ��
 corresponding to �

 steps��
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Goal angle Successful robots Updates taken Trial length
sensor �from 
	 �millions	 �steps	

Normal �� ��� ���

Damaged �
 ��� ����

Table ���� Corrected gradient results� Summary of successful robots �those averaging greater
than 
��� average payo� over the last ��


 training trials�� from �� di�erent � and � combi�
nations using on�line Modi�ed Q�Learning updates with �corrected� output gradients�
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Figure ���� The contour plots for Modi�ed Q�Learning when the corrected gradients are used�
Left� The graph corresponding to the normal robot� Right� The graph corresponding to the
robot with the damaged angle sensor�

and after updating will occur� This suggests that output correcting is mainly useful when
high learning rates are being used�
The results for the robots learning with the correct input show no real di�erences when

compared to those presented in Fig� ��� and Table ���� but then there was not much room
for improvement�
From these results� it would seem that the correcting forward pass does provide some

bene�t� albeit at the expense of having to perform signi�cantly extra computation at each
time step� Whether the extra pass is worth doing depends on the size of the learning rate
and how much improvement in performance is available�

����� Best Control Policy

In the last sections� it has been shown that the reinforcement learning methods using MLP
networks can learn to achieve very nearly the maximum payo� for every trial� In fact� the
level of average payo� received by the very best controllers translates into reaching the
goal over �� of the time� In this section� the quality of one such well trained controller is
examined and compared with a system trained with the incorrect goal angle sensor values
�section �����	 to show the e�ect that this has and how the reinforcement learning system
has learnt to overcome it�
The controller examined in this section comes from a robot that was trained on �����
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Maximum trial Exploration Average Goal Crash Timed�out
length �steps	 value T payo�

��� ��� ����
 ��� � �
���� ����� ��� �� �


��� ��� ����
 ��� � �
���� ����� ��� �� �

��� ��� ����
 ��� � �
���� ����� ��� �� �

Table ���� On�line Modi�ed Q�Learning trained robot tested on �


 randomly generated
rooms� with varying maximum trial lengths� and with and without exploration�

Maximum trial Exploration Average Goal Crash Timed�out
length �steps	 value T payo�

��� ��� ����� �
� � �
���� ����� �
� � ��

��� ��� ����� ��� � ��
���� ���� ��� � �

��� ��� ����� ��� � ��
���� ���� ��� � �

Table ��� On�line Modi�ed Q�Learning trained robot with damaged goal angle sensor tested
on �


 randomly generated rooms� with varying maximum trial lengths� and with and without
exploration�

randomly generated rooms using on�line Modi�ed Q�Learning with a training rate � of ���
and � equal to ����� Fig� ��� shows a typical training room layout with the trajectory of
the robot before and after training�
Table ��
 summarises the performance of the trained robot on groups of ���� trials

when the maximum steps available per trial is altered� and also if a small amount of
random exploration is available� These results show that the controller does not receive
any bene�t from performing occasional exploratory actions� which just result in increased
numbers of crashes� It also shows that the �nal robot can either get to the goal� in which
case less than ��� steps are required� or it cannot� in which case allowing extra steps before
time�out is of no use whatsoever� Typically� this means that the robot has got caught in a
loop� which is a consequence of its reactive controller which has no memory of whether a
situation has already been visited during a trial �and thus the robot will choose the same
action as it did last time	�
In contrast� the robot with the damaged sensor does bene�t from exploration� as can

be seen in Table ���� In fact� the increased trial lengths allows more of the robots that are
timing�out to reach the goal when exploration is allowed� With only ��� steps available
to reach the goal position� the robot fails � of the time due to time�outs� This drops to
��� if ��� step trials are allowed� with no real improvement in performance for further
increases in the number of steps allowed� However� comparing the �nal performance of
this robot when using exploration with that of the robot with the correct angle sensor
input �Table ��
	 reveals that their performance is almost identical in terms of allowing
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the robot to reach the goal� The di�erence is that the robot with the bene�t of the correct
angle sensor reaches the goal in an average of �� steps� whilst the robot with the damaged
sensor takes an average of �� steps�
This can be seen in Fig� ����� which compares the trajectory chosen by the robot with

the correct angle input with that of the robot with the damaged sensor on the same room�
As can be seen� the robot with clear knowledge of the relative angle of the goal elects
to turn around and so �nds the gap between the obstacles� However� the robot with the
damaged sensor ends up taking the long way round� as it has learnt to prefer to keep the
goal on the left �where the angle inputs are correctly coded at all times	�

����� New Environments

The last section showed the performance of a well trained robot when faced with room
layouts of the kind which it experienced during training� As Fig� ��� and ���� show� these
rooms have a fairly sparse layout of obstacles and often the robot can guide itself to the
goal without encountering any intervening obstacles� However� the point of training the
robot on randomised layouts is that it should learn a general policy� Therefore� it should
be able to deal with more cluttered environments and unusual obstacle layouts than it has
encountered during training�
In this section� this property is examined by seeing how the robot trained using on�

line Modi�ed Q�Learning �with the correct goal angle sensor	 coped in a variety of more
complex environments� The robot received no additional training to help deal with the
new environments and had to rely on what it had learnt about avoiding obstacles from
the training rooms�
Fig� ���� shows some hand constructed obstacle layouts� and the trajectories chosen

by the robot when placed at a variety of di�erent starting locations� The robot control
policy copes with most of the situations with surprising ease� including �nding its way
into a concave enclosure �bottom right of Fig� ����	� However� sometimes it does fail� as
can be seen in the top right�hand room� in which one of the starting positions has resulted
in the robot getting caught in a loop and failing to �nd the �entrance� leading to the goal�
Some more rooms are shown in Fig� ����� The top two rooms involve many more

obstacles than the training environments and a larger room size� yet the controller has no
trouble dealing with these situations� The bottom two rooms involve concave structures�
and whilst the robot copes with the bottom left example� the bottom right situation proves
to be too di�cult� Although it reaches the goal from certain starting positions� in others
it simply gets caught in a loop in the concave corners of the obstacle�
Another test of the robot control policy shown in Fig� ���� where the obstacles are

randomly generated circles� The �circle world� generates rooms which are more cluttered
than the training environment� Table ��� shows the performance of the system when
presented with ����� randomly generated rooms of this type �the time�out occurs after
��� steps	� The controller is able to cope with nearly as many of these types of room
as with the normal training environments �compare with the results in Table ��
	� Also�
again� a small amount of random exploration does not help the system�
Finally� in order to further demonstrate the robustness of the robot control policy�

the case where the goal is moving is considered� This was achieved by using two robots�
both using the same control policy� The target robot simply tries to get to a goal position
as before� The catcher robot� however� has the target robot position as its goal and so
must catch this robot in order to get its reward� If the target robot reaches its goal� it is
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Figure ���� A robot shown in a typical training environment� before and after training using
on�line Modi�ed Q�Learning with � 	 
��� and � 	 ��
� The large cross marks the goal
position� Left� Before training� Right� After training on �
�


 randomly generated rooms�

Figure ���
� A comparison of the trajectory chosen by a robots with and without damaged
sensors� Both were trained using on�line Modi�ed Q�Learning with � 	 
��� and � 	 ��
�
Left� The robot trained on the correct relative goal angle input� Right� One trained on the
damaged input�
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Figure ����� The on�line Modi�ed Q�Learning robot trained with � 	 
��� and � 	 ��
 shown
in a variety of hand constructed environments and with trajectories shown from a number of
di�erent starting locations to the goal position� The same robot controller is used in all cases
and has had no training on these speci�c environments�
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Figure ����� The same Modi�ed Q�Learning trained robot shown in more unusual environ�
ments� Top� A room with perimeter ��� times bigger than seen before and increased obstacle
densities� Bottom� The robot has only ever been trained on convex obstacles� but can cope
with some concave situations� though it gets stuck in loops from certain starting positions
�bottom right��
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Exploration Average Goal Crash Timed�out
value payo�

��� ����� ��� � �
���� ����� �
� �
 �

Table ���� Performance of the on�line Modi�ed Q�Learning trained robot when faced with
�


 randomly generated circle worlds�

Figure ����� The robot presented with a novel environment consisting of randomly placed
circular objects in a ��� times larger perimeter room than the the training rooms�

assigned a new one to keep it moving �hence the multiple goal crosses in the examples	�
Table ��� summarises the performance of the catcher robot as the relative speed of the
target robot is reduced and Fig� ���� shows some sample trajectories of the two robots�
Again� the robot control policy deals with this situation well� although the moving goal
does result in more crashes �the robot gets close to obstacles and hits them as it turns
towards the moving goal	�
So� overall� the reactive robot controller learnt by the reinforcement learning system

is remarkably robust and can cope with a wide range of situations� It also demonstrates
that the training environment does not need to be as complex as the intended operating
environment� as long as the system gets to experience the necessary range of situations to
result in a general control policy�

��
 Discussion of Results

The results presented over the last section have demonstrated that the reinforcement
learning techniques can produce controllers for robot navigation that are highly robust�
In this section� some of the issues surrounding the method are discussed�
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Relative speed Average Caught Crash Timed�out
of target robot payo�

��� ����� �
 � �
��� ����� ��� � �
��� ����� ��� �� �
��� ����� ��� � 

Table ���� Results for �


 trials of catcher robot as the relative speed of the target robot is
varied� The maximum number of steps before time�out is �

�

Figure ����� Sample trajectories of the two robots� ��� marks the trajectory of the target
robot and � � � the trajectory of the catcher robot� Left� The target robot is travelling at
half the speed of the catcher� Right� Example when the target is travelling at ���
 of the
speed of the catcher robot�

����� Policy Limitations

The robot has the capability to reach the goal on every trial� but fails to do so� This is
caused by looping �the robot dodges an obstacle and ends up back at a point it visited
before	 and thus being timed�out� and occasional crashes with obstacles which occur due
to the limited visual �eld of the robot range sensors� These problems are caused by
the purely reactive behaviour of the robot � it has no memory of situations that have
happened previously� or the number of steps it has taken� So� for example� a wall beside
the robot that has fallen behind its forward sensor arc will not be remembered� and thus
the robot may turn and hit it�
Therefore� the overall ability of the control system as presented is limited by being

purely reactive� One method to produce a robot capable of dealing with more complex
environments �such as non�convex obstacles and mazes	� would be to use a more hierar�
chical approach� This would involve separate Q�learning modules being taught to deal
with di�erent tasks� and then training the system to choose between them based on the
situation �Lin ���a� Singh ����	�
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����� Heuristic Parameters

There are several parameters that must be set in order to use the reinforcement learning
methods presented in this chapter� �� �� �� and T must all be set� and poor choices can
result in the system failing to converge to a satisfactory policy� The di�culty is that these
values are all heuristic in nature and currently need to be selected based on rules of thumb
rather than strict scienti�c methods�
The contour plots of Figs� ���� ��� ��
� and ��� show how the choice of learning rate �

and the TD�learning parameter � can e�ect the subsequent success or failure of the system
to converge to a successful solution� Some values simply result in very slow convergence
times� others in complete failure to learn a successful policy� This is because of the
generalisation property of MLPs� which means that information can be �forgotten� as well
as learnt� If the parameters chosen during training are unsuitable� the robot will forget
information as fast as it learns it and so be unable to converge on a successful solution�
This is why no proofs yet exist regarding the convergence of Q�learning or TD�algorithms
for connectionist systems�
Consequently� it is desirable to use training methods that are less sensitive to the choice

of training parameters� to avoid the need to perform repeated experiments to establish
which values work best� The results presented in the last section suggest that on�line
updates and the use of Modi�ed Q�Learning or Q��	� as opposed to standard Q�learning
updates� help reduce this sensitivity�
The value of the discount factor� �� was �xed throughout the experiments presented

at a value of ����� This was chosen so that the system would converge to solutions which
used the fewest steps to reach the goal� but needed to be a value close to � in order that
the discounted payo�s seen at states many steps from the goal would be a reasonable size�
With no discounting� the robot can arrive at solutions that reap high �nal payo�s� but
do not use e�cient trajectories �and hence the robot is often timed�out	� To illustrate
this� Fig� ���� shows the training curves for two robots trained with on�line Modi�ed Q�
Learning with and without discounting� As can be seen� the undiscounted robot does
considerably worse� especially in the average number of steps taken per trial� despite the
fact that there is only a � di�erence in the updates being made at each time step�
Thrun and Schwartz ����	 provide limits for � based on the trial length and number

of actions available to a system� assuming one�step Q�learning is being used� but more
general results are as yet unavailable� Also� an alternative to Q�learning called R�learning
�Schwartz ���	 has been suggested� which eliminates the discount factor altogether by
trying to learn undiscounted returns� However� results presented by Mahadevan �����	
showed that Q�learning outperformed R�learning in all the tasks he examined�
Finally� some experiments have shown that the convergence of the neural networks

relies heavily on the exploration used at each stage of learning� If it is too low early on
then the robot cannot �nd improved policies� whilst if it is too high at a later stage then the
randomness interferes with the �ne tuning required to have reliable goal reaching policies�
When using a Boltzmann distribution� therefore� the rate of convergence is dependent on
the rate of reduction of T �

����� On	line v Backward	Replay

The results of the tests for using on�line updating compared to backward�replay are in�
teresting� on�line updating consistently performs more successfully over a wider range of
training parameters for all  update rules� with the most marked di�erence in performance
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Figure ����� Graphs showing the e�ect of the discount factor �� Both robots were trained
using on�line Modi�ed Q�Learning with � 	 ��
 and � 	 
���� The dotted lines show the
normalised average number of steps per trial �with ��
 corresponding to �

 steps��
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for the series of experiments with the �damaged� goal angle sensor� This is quite surpris�
ing� as backward�replay has the bene�t of having all state�action pairs stored for the trial
and updating using supervised learning based on the �nal payo�� However� it would seem
that on�line learning has the advantage that the eligibilities act in a similar way to a
momentum term�
 providing updates that reduce the error to zero� instead of converging
asymptotically in proportion to the mean squared error� Providing a momentum term for
the updates performed during backward�replay could help achieve the same e�ect �as it
does in normal supervised learning tasks	� but would also introduce another parameter
that would need to be experimented with during training�

����� Comparison of Update Rules

The results show the relative performance of the  di�erent forms of update rule� It is
important to remember that all  of these update rules are exactly equivalent when purely
greedy actions are taken during a trial� The di�erence in the updates occurs only when
exploratory actions are taken�
Using standard Q�learning with the eligibilities set to zero for non�policy actions�

means the eligibilities are only allowed to build up when the robot takes a sequence of
greedy policy actions� This stops the results of exploratory actions from being �seen� by
earlier actions� but also means that states see a continual over�estimation of the payo�s
available� since they are always trained on the maximum predicted action value at each step
�Thrun and Schwartz ���	� However� in a connectionist system� generalisation occurs�
which means that the results of bad exploratory actions will e�ect nearby states even
if the eligibilities are zeroed� So� this mechanism is of limited value� and simply results
in the information gathered by good exploratory actions being used less e�ectively� The
overall result is that standard Q�learning converges less quickly and over a smaller range
of training parameters �especially noticeable with backward�replay on the damaged sensor
problem� Fig� ��
	 than Modi�ed Q�Learning or Q��	 updates�
Q��	 is in e�ect a combination of standard Q�learning and Modi�ed Q�Learning� and

this was shown by the way the training curve alters as the value of � is increased �Fig� ���	�
However� the rule is slightly harder and more computationally expensive to implement than
either standard Q�learning or Modi�ed Q�Learning� and in these experiments appears to
o�er no advantage over just using Modi�ed Q�Learning updates� In fact� by considering
the number of updates required for training� and the quality of the solutions in terms
of the average number of steps required to reach the goal� the performance of Q��	 is
actually worse� In addition� Q��	 has the disadvantage of requiring the storage of the
output gradients rwQt �section ��	�

��� Summary

The on�line connectionist reinforcement learning algorithms have shown promise as meth�
ods of training systems in complex environments� In this chapter� the algorithms have
been demonstrated on a mobile robot with limited sensory input and have shown that it
can be trained to guide itself to a target position in a �D environment whilst avoiding
collisions with randomly positioned convex obstacles� Furthermore� it has been shown
that this can be achieved without using a�priori knowledge to construct rules to restrict

	Or an integral term in a PID controller�
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the policy learnt by the robot� but instead by allowing the robot to learn its own rules
from an end�of�trial payo� using reinforcement learning�
Modi�ed Q�Learning has been shown in chapter � to provide the most e�cient updates

for a discrete Markovian problem� and now in this chapter for a continuous state�space
problem using neural network function approximators� Results presented in Tham �����	
demonstrate the performance of Modi�ed Q�Learning updates when applied to a multi�
linked robot arm problem� this time using CMACs as the function approximators� Q��	
was again shown to provide similar convergence rates� but the �nal policies involved the
arm taking a greater number of steps to reach the goal than those found using Modi�ed
Q�Learning updates�
Therefore� from the empirical evidence gathered so far� it would appear that Modi�

�ed Q�Learning provides the one of the most e�cient and reliable updating methods for
learning the Q�function�



Chapter �

Systems with Real�Valued Actions

In the previous chapters� reinforcement learning systems using Q�learning methods have
been developed which can operate with continuous state�space inputs� However� these
systems must still select actions from a discrete set� even though the optimal action at
each time step may not come from the set A that is available� In such cases� it would
seem logical to have some way of modifying the action set available in order to �nd the
optimal control at each time step� In this chapter� some of the options available are
discussed for modifying an action function A�x	 towards the optimal policy� in particular
methods based Adaptive Heuristic Critic �AHC	 reinforcement learning �section ���
	 are
examined�
Normally� a single function approximator is used to produce a single action at each time

step� which is modi�ed as the system learns� However� a policy with discontinuities may
be di�cult to learn using a single continuous function approximator� and thus a method of
combining real�valued AHC learning with Q�learning is proposed� called Q�AHC� This has
the advantage that multiple function approximators may be able to represent the overall
policy accurately� where a single function approximator is unable to�
A further subject examined in this chapter is that of vector actions i�e� actions with

multiple components which need to be set at each time step� The tasks studied in previous
chapters have involved actions with multiple components �e�g� the speed and steering angle
for the robot in the Robot Problem� see section ��	� However� the issue of how to select
the values of the individual components has been avoided by selecting from the set of all
possible action vectors� In this chapter� a number of alternatives for producing vector
actions using the Q�AHC architecture are presented and their performance compared�


�� Methods for Real�Valued Learning

A common reinforcement learning method for what is known as real�valued� action learning
is to use the AHC methods described in the introduction �section ���
	�
The idea behind AHC� or actor�critic� systems is for the actor to generate actions�

and the critic to generate internal reinforcements to adjust the actor� This is achieved by
learning the value function� V �x	� and using the TD�error that this produces at each time
step as an internal reinforcement signal �t to adapt the action function� A�x	� Thus� the

�This is something of a misnomer� but comes from the time when many reinforcement learning problems
produced binary outputs to select between pairs of actions�

�
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internal payo� from the critic is equal to�

�t � rt � �Vt�� � Vt ����	

If the return is lower than predicted� then the action that produced it will be punished�
and if it is higher� then it will be rewarded� By adjusting the action function to favour
producing actions that receive the best internal payo�s� the idea is that actor should
converge to producing the optimal policy�

����� Stochastic Hill	climbing

The stochastic learning automaton �Narendra and Thathachar ����	 is a general term de�
�ned to represent an automaton that generates actions randomly from a probability dis�
tribution� and which receives reinforcement signals to adjust these probabilities� Williams
�����	 extended this idea to the more useful associative stochastic learning automaton
�ASLA	 where the action probabilities are a function of the state x� He introduced a class
of methods called REINFORCE for updating the ASLA with respect to the immediate
reinforcement signal� and Extended REINFORCE methods which use temporal di�erence
learning to perform the updates� The basic operation of these rules is to adjust the ASLA
probability distribution to favour actions that receive high payo�s�
The intention was that individual ASLA units could be connected together to form

a neural network structure� and that the resulting network could then be trained using
reinforcement learning� This is similar to the on�line MLP training algorithm examined in
chapter � except that in the ASLA network the output of each unit is generated randomly
from a probability distribution rather than deterministically from a �xed function�
The REINFORCE training methods are termed stochastic hill�climbing as the improve�

ment to the output is made by trial and error � a random output is generated� and the
probability function is adjusted to make it more or less likely to be generated again based
on the payo� received� This mechanism can be used as part of an Adaptive Heuristic
Critic system to produce a real�valued action function� An ASLA is used as the actor to
generate an action� and then updated based on the internal payo� �t generated by the
critic �Prescott ���� Tham and Prager ����	�

Gaussian ASLA

The method studied in this chapter involves representing the action function as a Gaussian
distribution� with mean ��xt	 and standard deviation ��xt	� Therefore� the probability
distribution p�aj�t� �t	 is given by�

p�aj�t� �t	 �
�q
����t

exp
�

�a��t�
�

���
t ����	

where a is the action� �t � ��xt	� and �t � ��xt	� At each time step� an action at is
selected randomly from this distribution for the current state xt�
The question is how to alter the functions ��x	 and ��x	 in response to the internal

payo�� �� Williams �����	 suggested using the gradient of the log of the Gaussian distri�
bution� In this case� if the functions are considered parametrised by internal values w� a
TD�learning update rule can be used�

�wt � �t�t

tX
k��

���	t�krw ln p�akj�k� �k	 ���	
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where for the mean the gradient is�

rw ln p�atj�t� �t	 �
	 ln p�atj�t� �t	

	�t
rw�t �

at � �t
��t

rw�t ����	

and for the standard deviation it is�

rw ln p�atj�t� �t	 �
	 ln p�atj�t� �t	

	�t
rw�t �

�at � �t	
� � ��t

��t
rw�t ����	

This means the functions are altered to increase or decrease the log likelihood of the action
depending on whether the action led to an increase or decrease in the predicted payo��
This is elegant since exploration is automatically taken care of by the size of the standard
deviation parameter� As the system improves its predictions� the standard deviation will
be reduced� and thus the system will converge to performing the mean action at all times
�unless higher payo�s can be achieved for retaining a certain level of randomness	�
However� experiments exposed a problem with using these gradients � namely that

as the standard deviation �t reduces� the size of the gradients increases� due to the e�ect
of dividing by second and third powers of �t in equations ��� and ���� Therefore� the
gradients can potentially be of the order of �
�t� When the standard deviation is very
low �and hence there is very little deviation from the mean action �t	� the gradients and
resulting changes to the parameters of the function approximators can be huge� which is
likely to destroy the currently learnt function mapping�
However� the gradients only give a direction in which changes can be expected to

produce improvements� By considering equation ���� it can be seen that the gradient for
�t would be more useful if the �
�

�
t was dropped� as would the gradient for �t if the �
�

�
t

was dropped in equation ���� For the mean this is equivalent to using a learning rate
�t � ���

�
t and for the standard deviation ���

�
t where �� and �� are constants�

Stochastic Real�Valued Units

Gullapalli et al� �����	 suggested a similar method to the stochastic hill�climbing ASLA�
called the Stochastic Real�Valued unit �SRV	� This too seeks to represent the current
action function using a mean and standard deviation to de�ne a Gaussian distribution�
The di�erence from the Gaussian ASLA is that the standard deviation �t is produced
by a function based on the current prediction of return i�e� �t � ��Vt	� The idea is that
the standard deviation should be high when the predicted return is low� and vice versa�
In this way� more exploration occurs when the expected return is low� but as it rises the
system will be more inclined to follow the mean action� which should be converging to the
optimal policy�
Whilst this appears intuitively sensible� the designer is immediately faced with the

problem of exactly what function to use to generate �t� How much exploration should be
allowed when the expected return is low� How quickly should the standard deviation be
reduced as the return rises to ensure convergence� It becomes clear that the design of the
function for generating �t is very problem speci�c� as it depends on the size of the payo�s
available and how they are awarded�

����� Forward Modelling

Forward modelling generally implies learning a world model such that the next state can be
predicted from the current state and action� In the work of Jordan and Jacobs �����	� this



�� Systems with Real�Valued Actions �	

A(x)

x

Q(x,a)

a

W(x,a)

V(x)

A(x)

x

a

x

NOISE

Figure ���� Left� Jordan and Jacob�s Forward Model architecture interpreted as a real�valued
Q�learning system� Right� Brody�s extension using a world model�

is taken a step further� the system attempts to learn to predict the expected return rather
than the next state xt��� This method is equivalent to learning a Q�function� Q�x� a	�
where a is an input �see Fig� ���	�
The action a is produced by an action function A�x	� and the Q�function is represented

by a di�erentiable function approximator� Thus� the idea is to calculate the output gra�
dient 	Q�xt� at	
	at from the Q�function� and use this to change the output of the action
function by gradient ascent� However� this idea has a �aw� in that the only input to the
system as a whole is the current state xt� and thus A�x	 and Q�x� a	 can be considered as a
single function of x� This is more clearly seen from the left�hand block diagram in Fig� ����
In fact� Q�x� a	 is really just learning the value function V �x	 for the current policy of
A�x	� as only one action is performed in each state x� Therefore� only the component of
the gradient along the trajectory of x will be valid� the other components are unde�ned�
so the gradient will not necessarily provide useful updates�
The solution is to decouple A�x	 from Q�x� a	 by adding noise to the action output �as

shown by the dashed box in Fig� ���	� which provides the necessary exploration to learn
Q�x� a	 properly� This makes the system very similar to a real�valued AHC system� except
that the changes in the action function are made using the gradients passed back by the
Q�function� rather than using the TD�errors in the predictions made by a value function�
An alternative solution �Brody ����	� is the architecture shown on the right of Fig� ����
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In this� a world model is learnt �rst� and then its output is fed into a value function� In
this way� the error in the value function gives an indication of the required change in xt���
which in turn can be passed back through the world model to give the required change in
the action at� This architecture is not entirely satisfactory� since it requires learning a full
world model� which the methods investigated in this thesis have tried to avoid�


�� The Q�AHC Architecture

In this section� the ideas of Q�learning� where the system selects between multiple actions�
and AHC learning� where an action function is adaptively changed� are brought together�
By combining the two methods� the Q�learning limitation of selecting from a �xed set of
actions is eliminated� whilst the problem of trying to represent a complex policy using a
single function approximator when using real�valued AHC methods is also removed� This
leads to a potentially very powerful architecture� which will be called Q�AHC learning�
The concept that the actions selected between by Q�learning do not have to come

from a �xed action set A is as old as Q�learning itself� Watkins �����	 talked about
hierarchies of Q�learning systems� where the actions selected between by a master Q�
learning element would themselves be produced by other Q�learning elements� This idea
was later implemented by Lin ����a	� where Q�learning elements were used to learn a
set of skills� s � S� which were then selected between by a master element which learnt
Q�x� s	�
A similar type of system� called the CQ�L architecture� was proposed by Singh �����	

�and later extended by Tham �����		� This involves several separate Q�learning elements
which are selected between by a gating element �which performs a similar role to a master
Q�learning element	� The CQ�L system is designed primarily to be used for sequential
decision tasks� where each Q�learning element is used in sequence in order to achieve an
overall task� However� in essence it is the same as hierarchical Q�learning�

����� Q	AHC Learning

The combination of the Q�learning and AHC methods is quite straightforward� Initially�
the case is considered where there is only a single component to the action �i�e� it is not
a vector	� but in the next section a number of di�erent architectures for producing vector
actions are discussed�
The Q�AHC has a hierarchical architecture� with a Q�learning system as the top level

which selects between a set of lower level real�valued AHC elements� The selected AHC
element is responsible for generating the action used by the system� This is shown in
Figure ��� where each action value Q�x� A	 is shown connecting to the AHC element A�x	
that will be used if it is selected� Instead of each AHC element maintaining a value function
to generate internal payo�s� the TD�error used to update the Q�function is used� e�g� for
Modi�ed Q�Learning updates�

�t � rt � �Qt�� �Qt ���
	

The main di�erence from the AHC learning algorithm described earlier is that the output
gradients are only calculated with respect to the �t and �t of the selected AHC element�
In other words� only the eligibilities of the action function that generated the action at are
increased� However� the TD�error produced by the error between successive Q�function
predictions is used to update all the AHC units and all the action value predictors�

�wt � �t�tet ����	
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Q(x,A)

A(x)

Q(x,A)

A(x)

Q(x,A)

A(x)

Figure ���� The basic Q�AHC architecture� The circles represent the AHC modules which are
selected when the action value linked to them by an arrow is selected�

As with on�line Q�learning� it is the eligibilities et that determine the extent to which the
individual parameters wt are updated in response to the TD�error�
Of course� there is also a choice to be made of which update rule is used for the

Q�learning part of the system� This can be any of those discussed in chapter �� In the
experiments presented later in this chapter Modi�ed Q�Learning �see section �����	 is used�


�� Vector Action Learning

The immediate problem faced in applying adaptive action function methods to a task
like the Robot Problem �chapter �	 is the fact that the action is actually a vector� For
example� in the Robot Problem� the action has two components� the steering angle and
the speed� Thus methods are needed to determine how to alter each action component
in response to the scalar internal payo� �� Previously� this problem was avoided because
each action value was associated with a separate �xed action vector�
With an AHC system� the obvious choice is to learn an overall value function� V �x	�

and use the TD�errors produced by this to update all of the action elements �Tham and
Prager ����� Cichosz ����	� This ignores the structural credit assignment problem� which
is to take into account the contributions of the individual elements to the TD�error� For
example� in the Robot Problem� the robot might be heading for a collision with an obstacle
and the selected angle component is to turn sharply �good idea	� whilst the selected speed
component is to travel at top speed �bad idea	� If in consequence the robot crashes� then
it will really be the fault of the speed element� However� in the above formulation� both
elements will see the same internal payo�� It is questionable how much of a problem this
is� good action choices by individual elements will generally see higher average payo�s
than bad choices� as they contribute positively to the overall quality of the action vector�
However� the lack of explicit structural credit assignment may increase the convergence
times�
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����� Q	AHC with Vector Actions

If the action to be performed at each step is in fact a vector of individual scalar actions�
then their are more choices to be made when it comes to implementing a Q�AHC system�
Fig� �� shows  possible architectures for a system with two components to its actions�
The �rst architecture� Separate Q�AHC� involves treating the components of the ac�

tions as completely independent� Therefore independent Q�AHC learning elements are
used to select each component of the action� The di�culty is that each action component
is selected taking no account of the values selected for the other components� This makes
it harder for each Q�AHC element to predict the expected return for their action compo�
nent� because the e�ect of the other action components cannot be taken into consideration
when making the prediction�
The second architecture� Combined Q�AHC� allows each action value to correspond to

a particular combination of the AHC elements� This is similar to the �xed action combi�
nations used by the Q�learning systems for the Robot Problem in chapter �� where the 

actions were made up of all combinations of the  �xed angles and � speeds� The prob�
lem with the Combined Q�AHC architecture is that each AHC element will see internal
payo�s generated from their inclusion in di�erent action vectors� These payo�s may con�
�ict � e�g� one vector action is very useful� another is not� hence any AHC element that
contributes to both will receive con�icting signals depending on which action vector was
selected� However� much of this problem should be absorbed by the Q�function� which will
learn to assign the poor action vector a low action value and so not select it very often�
The �nal architecture� Grouped Q�AHC� simply involves having a separate action

vector of AHC elements associated with each action value� This would appear to be the
most satisfactory architecture� as it reduces all action component interference problems�
However� there still remains the same problem of structural credit assignment associated
with training vector AHC learning systems �see section ��	�
It should also be noted that the �rst architecture allows the greatest number of action

combinations per element �both Q�function and AHC	� whilst the last architecture allows
the least� This is because the last system has a set of action vectors that are completely
independent� whereas the other two rely on combinations of AHC elements�


�� Experiments using Real�Valued Methods

In this section� some of the real�valued action methods discussed in the previous sections
are examined by testing them on the Robot Problem introduced in chapter ��
The real�valued action systems used in these experiments are considered for the case

where MLP neural networks are used as the function approximators �chapter 	� In addi�
tion� the updating method used throughout is the on�line temporal di�erence algorithm as
discussed in section ���� The real�valued systems use MLPs not only for the prediction
of the return� but also for the action functions� For Gaussian ASLA action functions using
stochastic hill�climbing techniques� this means that one output is required for the mean
��x	 and one for the variance ��x	� In the following experiments� separate single output
networks were used� rather than a single network with two outputs� to avoid the weights
of hidden units receiving con�icting updates from the two outputs�
In the �rst experiments� the robot task is restricted to single action component se�

lection� where the reinforcement learning system attempts to select the optimum steering
angle whilst the speed of the robot remains constant� Hence� the quality of the optimal
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Q(x,A)
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Q(x,S)Q(x,S)Q(x,S)

S(x) S(x) S(x)

Combined Q�AHC

Q(x,C) Q(x,C) Q(x,C) Q(x,C)

A(x)A(x)A(x)

Q(x,C) Q(x,C)
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Grouped Q�AHC

A(x) S(x) A(x) S(x) A(x) S(x)

Q(x,C) Q(x,C) Q(x,C)

Figure ���� � alternatives for Q�AHC learning with multiple action components� In the above
diagrams� the action vectors have � parts� A�x	 and S�x	� which correspond to the steering
angle and speed AHC modules in the Robot Problem� Each is selected when the Q�value linked
to them by an arrow is selected�
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policy is restricted� as there are some starting situations in which the robot has no way of
avoiding a collision due to the radius of its turning circle� However� this task is considered
�rst since it does not involve the complications introduced by vector actions�
In subsequent sections� the systems are tested on the full Robot Problem� as tackled in

the previous chapter by the Q�learning systems� For this task the reinforcement learning
system must set the speed as well as the steering angle� and so requires the use of the
di�erent Q�AHC architectures introduced in section �� for dealing with vector actions�

����� Choice of Real	Valued Action Function

The �rst question is what form of real�valued action function is best to use� Tests were
carried out with a real�valued AHC system using Gaussian ASLAs� SRV units with a
variety of di�erent �t functions� and other methods including ASLAs with uniform dis�
tributions and �t values that reduced with time� The main conclusion drawn from these
experiments was that the exact form of the real�valued AHC element was fairly irrelevant
� several of the methods performed to a similar quality� The main criteria appeared to
be that the standard deviation value �t should reduce as the expected return rose� In
the end� therefore� the stochastic hill�climbing Gaussian ASLA as the action function was
used for all AHC elements in the following experiments� with the �boosted� learning rates
to avoid the problem of over�large updates when �t was small�

� exactly as presented in
section ������

����� Comparison of Q	learning� AHC� and Q	AHC Methods

The results presented in this section are for the single action robot problem where the
system can only control its direction� the speed is �xed at the maximum� Results are
presented to compare the performance of the following  algorithms�

� Modi�ed Q�Learning �section �����	

� Real�valued AHC learning �section �����	

� Q�AHC learning with  AHC elements �section ���	

Each method was trained for the same 
 combinations of � and � as used to test the
Q�learning algorithms in chapter �� The Q�AHC algorithm used Modi�ed Q�Learning to
update its Q�function and both Q�learning methods used the same exploration procedure
and values as were used in the previous chapter �see section �� for details	� The actors of
the AHC and Q�AHC methods used learning rates for the mean and standard deviation
of �� � �� � �� and the MLPs used for the ��x	 and ��x	 functions each had  hidden
units� The real�valued steering angles were restricted to the range ������������
All other aspects of the Robot Problem were exactly as used in chapter �� including the

payo� function and the sequence of randomly generated rooms used to train the robots�
Each robot was trained on a sequence of ����� rooms�
The contour plots in Fig� ��� show the average end�of�trial payo� received by the robots

over the last ����� trials of their training� Note that the contours on these graphs are for
much lower payo� levels than those used on the Q�learning graphs in Fig� ��� and ���

�In fact� without the boosted learning rates� the action function received such large weight updates that
the network outputs were forced into saturation�
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Figure ���� The contour plots for a wide range of � and � parameters for Q�learning� real�
valued AHC learning� and �nally Q�AHC learning� The values represent the average payo�s
received by each system over the �nal ��


 trials of a �
�


 trial training run� Note that the

contour values are for considerably lower levels than those presented elsewhere in this thesis�
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As Fig� ��� shows� the best performance by far is achieved by the robots using Modi�ed
Q�Learning with a �xed action set� It is not necessarily surprising that the AHC robots did
so badly� as it is possible that the policy required for success was di�cult to approximate
by a single small MLP� perhaps because it contained a large number of discontinuities
�although experiments with networks with a larger number of hidden units did not perform
any better	� However� it is surprising that the Q�AHC robots� which have the potential
to select actions such that they can perform exactly as the Q�learning system� did not do
better�
In fact� an examination of the policies selected by the Q�AHC systems shows that for

some values of the parameters � and �� the system selects a single AHC element almost
exclusively� For other values� however� the AHC elements have learnt to generate constant
steering angles at opposite ends of the action range �meaning that two of the actions are at
one end� and one at the other	� The di�erent actions produced are then selected between
by the action selector exactly as in a �xed action set Q�learning system� Consequently�
there appear to be two possible policy solutions that the system can arrive at�
Examining the systems that select one AHC element at all time steps reveals that the

other two AHC elements have moved to generating actions at one end of the allowable
range� In fact� the evolution of the systems that use a single AHC element appears to
involve all of the AHC element outputs moving towards the same end of the action range�
and thus one eventually winning out as providing the most successful policy� If instead the
AHC element outputs diverge towards opposite ends of the action range� then the system
discovers that a better policy is to select between them as for a �xed action set Q�learning
system�

����� Comparison on the Vector Action Problem

In this section� results are presented for the real�valued reinforcement learning systems
that set both the speed of the robot and the steering angle� The speed of the robot is
limited to the range ���d�� where d is a positive constant �see Appendix A	�
The �rst contour plot� shown in Fig� ���� is for the plain real�valued vector AHC

method �see section ��	� The contour levels are the same as used in chapter � and so a
direct comparison of performance can be made� The example training curve shows that
the system has a noisy start� but then rises at around ������ trials to a respectable level
of performance� However� as can be seen from the contour plot� it is one of the few robots
to do this�
Fig� ��
 shows the same data� this time plotted for the lower contour levels used for

the plots in the previous section �Fig� ���	� In addition� the example training curve is
shown for a di�erent setting of the learning rate �� It can be seen that the average payo�
curve is still rising slowly at the end of the training run� and has not made the sudden
jump that occurs in the example graph in Fig� ���� Also� interestingly� the Q�learning
and Q�AHC systems trained in the last section on the steering angle only problem have
achieved a better performance over a wider range of values than has been achieved by the
vector action AHC method�
The remainder of the experiments in this section concentrate on the vector action

Q�AHC methods introduced in section �����

� Separate Q�AHC� Two separate Q�AHC learning elements were used� one for
speed and one for steering angle� Each was made up from  AHC elements� and the
two Q�learning elements learnt independently of one another�
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Training method Successful robots Updates taken Trial length
�from 
	 �millions	 �steps	

Vector AHC  ��� ���

Separate Q�AHC �� ��� ���

Combined Q�AHC � ��� ��

Grouped Q�AHC �
 ��� ���

Table ���� Comparison of vector action methods� The results are shown for successful robots
averaging greater than 
��� payo� over the last ��


 trials for �� di�erent � and � combina�
tions�
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Figure ���� Left� The contour plot for the real�valued vector AHC learning system� Right� An
example training curve taken at the point marked with a ��
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Figure ���� Left� The same contour plot for the real�valued vector AHC learning system when
plotted against lower contour levels� Right� A di�erent example training curve taken at the
point marked with a ��
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� Combined Q�AHC� The Q�learning element selected between speed�angle action
pairs� which were made from the 
 combinations possible with  steering angle AHC
elements and � speed AHC elements�

� Grouped Q�AHC�  speed�angle vector AHC elements were selected between by
the Q�learning element�

In fact� the above architectures correspond exactly to those shown in Fig� ��� The sizes
were chosen so that each of the architectures would use roughly the same number of neural
networks� In fact� the Separate Q�AHC system needed �� networks� Combined Q�AHC
�
 networks� and Grouped Q�AHC �� networks�
In all of the experiments presented� the Q�learning elements use the Boltzmann func�

tion to select between actions� exactly as in chapter �� Modi�ed Q�Learning is used for
the update rule� The performance of the systems using other Q�function update rules was
not examined�
The contour plots for the average payo�s received by the various architectures after

����� trials are shown in Fig� ���� It can be seen that the Grouped Q�AHC method
works over the widest range of � and � values� with Separate Q�AHC next� and Combined
Q�AHC performing the worst� All of the methods outperform the vector AHC method�
although the Combined Q�AHC method does not perform as well in the region where
vector AHC does well� Table ��� summarises the performances of the di�erent methods
for the successful robots� As can be seen from this table� all the methods train using a
relatively low number of updates�
The AHC elements in the Separate Q�AHC systems turn out to have each gravitated

towards producing actions at the limits of the action ranges� The Q�learning elements then
select between them based on the situation� choosing to travel at maximum speed most
of the time unless an obstacle is in the way� This indicates that the speed and steering
angle can be selected independently without too much di�culty�
Combined Q�AHC has the worst performance of the  architectures� This is unsurpris�

ing given the level of interference that occurs due to the AHC elements being used with
di�erent partners� The system tends towards selecting the same action value� and thus
pair of AHC elements� at all times� Hence� the resulting performance is about the same
as the vector AHC system examined at the start of this section� The di�erence is that it
has several competing AHC elements to choose from and so appears to work over a wider
range of � and � parameter values than the single vector AHC learning system�
A close examination of the policies used by Grouped Q�AHC reveals that the individual

action function pairs have gravitated towards producing actions at di�erent limits of the
action ranges� to produce  di�erent �xed action vectors� The system then selects between
them using Q�learning� For example� the Grouped Q�AHC learning system at � � �����
� � ��� �nishes the training run with the AHC pairs representing the following  vector
actions� ���� d	� ���� d	� and ���� �	� Given that this set of  action vectors represents
half of those available to the Q�learning systems examined in chapter �� it is unsurprising
that the overall quality of the policies found by this system are worse than the pure Q�
learning systems �compare the contour plot of Fig� ��� with that of Modi�ed Q�Learning
in Fig� ��	�
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Figure ��� Left� The contour plots for the di�erent real�valued vector action Q�AHC archi�
tectures� Right� Examples of training curves taken at the points marked with a ��
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Figure ���� Selecting the optimal action in a state� Left� Hill�climbing will lead the action
function� A�x	� towards a sub�optimal action� Right� The �xed action set� fa�� � � � � a
g�
ensures at least one action is near the optimum value�


�
 Discussion of Results

The performance of the real�valued reinforcement learning methods examined over this
chapter has been disappointing� None of the AHC or Q�AHC methods manage to do as
well� over as wide a range of � and � parameter values� as the Q�learning methods presented
in the previous chapter� The direct comparison of methods on the task of setting only the
steering angle �section �����	 demonstrated that the Modi�ed Q�Learning system selecting
from a �xed set of actions was able to outperform both real�valued AHC and Q�AHC�
The overall performance of the Q�AHC systems is quite poor when compared with

the standard Q�learning methods� However� it should be remembered that the Q�learning
method involves the selection of a �xed action set a�priori by the designer of the system�
For the robot navigation problem� choosing useful actions is not too di�cult� but for some
tasks� choosing an appropriate �xed action set could be more di�cult� In this sense�
the real�valued AHC architecture is more general� as it attempts to select the action
appropriate to each state for itself� The Q�AHC systems have the best of both worlds�
thus on the Robot Problem� the Q�AHC systems were able to achieve better policies than
the real�valued AHC systems� because they could select between AHC elements that had
gravitated towards the limits of the action ranges� The best vector action Q�AHC system
was Grouped Q�AHC� which may have performed better had it been able to produce all

 action combinations available to the �xed action set Q�learning systems in the previous
chapter �it could only produce 	�
Examination of the policies used by the di�erent systems reveals an interesting fact�

the systems either end up selecting a single AHC element for the majority of the time� in
which case the overall performance of the system is around that of a pure AHC system�
or they chose between a selection of AHC elements which have learnt to produce widely
di�ering actions� and thus behave and perform more like a pure Q�learning system� This
property is explored further in the next section�
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����� Searching the Action Space

In section ����� it was suggested that the reason why the real�valued AHC system did not
perform as well as the Q�learning system could be because the small MLP network used for
the action function was unable to approximate the optimal policy� However� experiments
had already shown that this size of MLP was capable of learning a successful policy from
the discrete actions generated by a system trained using Q�learning� In addition� it had
been found that systems using networks with more hidden units did not perform any
better�
Yet� when real�valued AHC systems were used to train the action function for the task

of setting only the steering angle �section �����	� even the best systems got to a level of
average payo�s of around ����� and no further� This is in comparison with Q�learning
systems which could reach average payo�s of ���� on the same task� As discussed in
section ������ di�erent forms of action function and learning parameters did not give any
improvements over the Gaussian ASLA unit �nally used�
The problem stems from the fact that the real�valued AHC systems studied in this

chapter use a gradient ascent method �stochastic hill�climbing� section �����	 to adjust
the action function� Gradient ascent is best suited to searching smooth functions with a
single maximum � in this situation� taking steps uphill will be guaranteed to lead to the
optimal value� However� the predicted return across the action and policy space in each
state may contain gradient discontinuities and�or multiple maxima� This is illustrated
by the diagrams in Fig� ����� Simply using gradient ascent may lead the action function�
A�x	� in the direction of a local� but not global� maximum and thus the resulting policy
would be sub�optimal�
Q�learning can avoid this due to its use of a �xed set of actions which learn action

values independently of one another� The eventual greedy policy action will be the one
that started closest to the global maximum �a� in Fig� ���	�
With the Q�AHC system� the di�erent action functions of the AHC elements can move

towards di�erent local maxima� The Q�learning action selector can then choose the action
function that has moved to the global maximum� However� the di�culty which has been
highlighted by the experiments in this chapter� is that the maximum each action function
heads towards is random� Consequently� it is possible for all the action functions to head
to the same maximum� If this happens� the best performance that can be achieved is the
same as a pure AHC learning system with a single action function�
Possible ways to combat this e�ect and improve the performance of Q�AHC methods

include�

� Action Function Initialisation� This involves setting the initial parameters w
of the action functions so that they start in di�erent parts of the action space� If
multiple maxima exist� then the functions will hopefully start in di�erent regions
of attraction and so at least one will learn the action corresponding to the global
maximum in each state�

If MLPs are used to represent the action function� then each action output can
be initialised by setting the output bias weight to the appropriate level� Tests of

�These diagrams are something of a simpli�cation� in reality� the predictions of return are also a function
of the policy� �� which changes with the action function� Thus the two maxima shown might exist at two
separate policies � as the action function moves towards one it is actually moving towards a maximum in
policy space as well as action space�
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this idea for a Combined Q�AHC system resulted in systems that learnt to select
between action pairs� rather than using a single pair exclusively as before� and hence
which achieved a higher level of average payo�� To set the initial values for the
action functions relied on the prior knowledge of which actions were best� and so
was similar to starting with a �xed action set and then allowing the system to modify
the values as it learnt�

� Action Function Restarting� When action functions share a maximum� only
one ends up being selected� and so it would seem useful to re�use the other action
function elements� Thus� if the usage of an action function falls below a certain
threshold � e�g� not being selected as the greedy action for N successive time steps
� then it could be restarted in a new region of the action space��

The di�culty with this idea is that the associated action value Q�x� a	 for a restarted
action function will be unde�ned� If it is set too low� then the newly reset action
function will not be selected� If it is set too high� then the reset action function
will get selected a great deal initially� but would then be judged on its starting
performance� which would almost certainly be poor and result in a rapid drop in the
associated action value� An alternative might therefore be to add a selection bonus
to the restarted action value� and then gradually reduce it over a number of trials�
The aim would be to encourage the system to select the restarted action function
whilst the corresponding action value learnt its correct level�

� Action Range Restrictions� The action functions could be restricted to producing
actions in separate regions of the action range� This is similar to initialising the
action functions to start in di�erence parts of the action space� except they would
never be able to accumulate at the same maximum� since each would be con�ned
to a particular region� The result would be like using a normal Q�learning system
with a �xed action set� except that the actions would be able to shift around a little
towards the global optimum of their region�


�� Summary

In this chapter� methods of producing real�valued actions in an on�line reinforcement
learning system have been presented� Firstly� several methods of producing real�valued
AHC learning systems were examined� It was found that various forms of actor could
provide a similar level of performance� though they tended to be very sensitive to the
parameters used to train the system�
A method of combining Q�learning and AHC learning methods called Q�AHC was

then introduced� This has the advantage over Q�learning of being able to produce con�
tinuous real�valued actions� rather than relying on a �xed action set� In addition� it has
the advantage over real�valued AHC learning of providing a method that can cope with
discontinuities in the policy more easily than a single generalising function approximator�
However� the performance of the Q�AHC system is disappointing when compared to

that of pure Q�learning on the Robot Problem presented in chapter �� though it is better
than can be achieved using pure real�valued AHC learning� This is because the system

�This is similar to the idea used in Anderson 	�

�� to learn a Q�function using a resource�allocation
network 	RAN� 	Platt �

���
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tends to use either Q�learning or AHC learning to construct its �nal policy� rather than a
mixture of both� It was explained that this was due to each AHC element being attracted
towards an arbitrary local maximum of the Q�function� with the possibility of the global
maximum being missed�



Chapter �

Conclusions

In this thesis� the aim has been to present reinforcement learning methods that are useful
for the design of systems that can solve tasks in increasingly large and complex environ�
ments� The discrete Markovian framework� within which much of the work and theory of
reinforcement learning methods has been developed� is not suitable for modelling tasks in
large continuous state�spaces� Hence� the problems associated with applying reinforcement
learning methods in high dimensional continuous state�space environments have been in�
vestigated� with a view to providing techniques that can be applied on�line utilising parallel
computation for fast continuous operation�
The following areas were identi�ed as being important features of more complex envi�

ronments� The �rst was that learning an accurate model of such an environment could be
extremely di�cult� and so only methods that did not require a model to be learnt were
considered� The second was that large and continuous state�spaces need methods which
make maximum use of the information gathered in order to enable them to learn a policy
within a reasonable time� To this end� updating methods that provide faster convergence
were examined� as were generalising function approximators� Finally� methods were in�
vestigated to further enhance the reinforcement learning system by allowing it to produce
real�valued vector actions�
The resulting learning methods provide many of the features required for scaling up

reinforcement learning to work in high dimensional continuous state�spaces� The work
presented is therefore intended to be a useful step in the direction of producing complex
autonomous systems which can learn policies and adapt to their environments�

��� Contributions

This section summarises the main contributions made by the work presented in this thesis�

����� Alternative Q	Learning Update Rules

Several di�erent Q�learning update rules have been considered� including new forms �Mod�
i�ed Q�Learning and Summation Q�Learning	 for combining the method of TD��	 with
Q�learning� It has been empirically demonstrated that many of these update rules can
outperform standard Q�learning� in both convergence rate and robustness to the choice
of training parameters� Of these methods� Modi�ed Q�Learning stands out as being the
computationally simplest rule to implement and yet providing performance at least as
good as the other methods tested� including Q��	� Therefore� although it could be argued

��



�� Conclusions 	�

that other Q�learning update rules can perform as well as Modi�ed Q�Learning� none of
them appear to o�er any advantages�

����� On	Line Updating for Neural Networks

Consideration has been given to the problems of applying reinforcement learning algo�
rithms to more complex tasks than can be represented using discrete �nite�state Marko�
vian models� In particular� the problem of reinforcement learning systems operating in
high dimensional continuous state�spaces has been investigated� The solution considered
was to use multi�layer perceptron neural networks to approximate the functions being
learnt�
Methods for on�line reinforcement learning using MLPs with individual weight eligibil�

ities have been examined� It has been shown that these methods can be extended for use
with multi�output Q�learning systems without requiring more than one eligibility trace per
weight� The performance of these algorithms has been demonstrated on a mobile robot
navigation task� where it has been found that on�line learning is in fact a more e�ective
method of performing updates than backward�replay methods �Lin ����	� both in terms of
storage requirements and sensitivity to training parameters� On�line learning also has the
advantage that it could be used for continuously operating systems where no end�of�trial
conditions occur�

����� Robot Navigation using Reinforcement Learning

The connectionist algorithms have been demonstrated on a challenging robot navigation
task� in a continuous state�space� where �nite state Markovian assumptions are not ap�
plicable� In this kind of problem� the ability of the system to generalise its experiences is
essential� and this can be achieved by using function approximation techniques like MLP
neural networks� Furthermore� in the robot task� the input vector is large enough �seven
separate input variables in the task studied	 that approximators that do not scale well to
the number of inputs� such as lookup tables and CMACs� are inappropriate�
In the task considered� the robot was successfully trained to reach a goal whilst avoid�

ing obstacles� despite receiving only very sparse reinforcement signals� In addition� the
advantage over path�planning techniques of using a reactive robot was demonstrated by
training the robot on a changing obstacle layout� This led to a control policy that could
cope with a wide variety of situations and included the case where the goal was allowed
to move during the trial�

����� Q	AHC Architecture

Finally� an investigation of systems that are capable of producing real�valued vector ac�
tions was made� To this end� a method of combining Q�learning methods with Adaptive
Heuristic Critic methods� called Q�AHC� was introduced� However� the results with this
architecture were not as encouraging as was hoped� Although the Q�AHC system outper�
formed the AHC system� it did not perform as well� in general� as the Q�learning methods�
An analysis of why the system did not perform as well as might be expected was carried
out� which suggested that the problem stemmed from multiple local maxima in the policy
space� These caused di�culties for the gradient ascent methods used to adjust the action
functions and could result in the system learning to produce sub�optimal policies�
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��� Future Work

The reinforcement learning systems presented in this thesis attempt to provide many of
the features required for coping with large continuous state�space tasks� However� there
are still many areas that need further research� some of which are described below�

����� Update Rules

A whole variety of update rules for both Q�learning and AHC learning have been examined
in this thesis� One thing that is very clear is that the established rules are not necessarily
the best in performance terms� even though they are currently based on the strongest
theoretical grounding� In this thesis� the update methods have been inspired primarily
by the TD��	 algorithm� rather than dynamic programming� with a view to providing
methods that can be applied in non�Markovian domains�
The theory underlying the update rules presented in chapter � needs further investi�

gation in order to explain under what conditions di�erent methods can be expected to
perform best� As mentioned in chapter �� to guarantee convergence for a method such as
Modi�ed Q�Learning necessitates providing bounds on the exploration policy used during
training� Also� further examination to �nd the features important for updating in continu�
ous state�spaces with generalising function approximators is required� Williams and Baird
����b	 provide performance bounds for imperfectly learnt value functions� although these
results are not directly applicable to generalising function approximators� The only proof
of convergence in a continuous state�space belongs to Bradtke ����	� who examined a
policy iteration method for learning the parameters for a linear quadratic regulator�

����� Neural Network Architectures

Throughout most of this thesis� the use of MLP neural networks as a function approxi�
mation technique has been used� The attraction of MLPs is that they are a �black�box�
technique that can be trained to produce any function mapping and so provide a useful
general building block when designing complex systems� In addition� they are fundamen�
tally a parallel processing technique and can be scaled for more complex mappings simply
by adding more units and layers� Their disadvantage is that the conditions under which
they will converge to producing the required function mapping is still not well understood�
Ideally� one would want to use an arbitrarily large neural network and expect it to work

just as well as a small network� Work by Neal �����	 and others on Bayesian techniques
may hold the answer� as methods have been provided in which the best weight values across
the entire network are found by the learning procedure� Unfortunately� as with many of
the more advanced learning methods� these techniques require complex calculations based
on a �xed training set of data� which are not suitable for on�line parallel updating of
networks for reinforcement learning tasks�

����� Exploration Methods

The exploration method used by the system is fundamental in determining the rate at
which the system will gather information and thus improve its action policy� Various
methods have been suggested �Thrun ����� Kaelbling ����	 which are more sophisticated
than functions based only on the current prediction levels like the Boltzmann distribution�
However� most of these methods rely on explicitly storing information at each state� which
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can then be used to direct exploration when the state is revisited� Storing such data
is not di�cult for discrete state�spaces� but is not so easy for continuous ones� This is
because continuous function approximators will generalise the data to other states� thus
losing much of the important information� It is therefore necessary to consider exploration
strategies that take this e�ect into account�

����� Continuous Vector Actions

The Q�AHC architecture was not as successful at providing real�valued vector actions as
had been hoped� It may be that methods based on forward modelling �section �����	
provide the key� as the resulting Q�function has the potential to provide action value
estimates for every point in the action space� The main advantage this gives is the ability
to provide initial action value estimates for judging new actions and skills� The lack of
initial estimates was one of the di�culties discussed with the proposed idea of action
function restarting �section �����	�
The main disadvantage of the forward modelling approach is that to evaluate multiple

action vectors at each time step� the same Q�function must be accessed multiple times�
This either means losing the parallel processing property of the system� or maintaining
multiple copies of the Q�function� However� this still remains a very interesting area for
reinforcement learning research�

A Final Story

Even the best trained robots in the Robot Problem sometimes get stuck in a loop because
they cannot �nd a way around the obstacles in their path� An examination of the predicted
return during such a trial showed that the maximum action value was quite low when the
robot was forced to turn away from the goal� Consequently� it was speculated that the
robot might learn to use an �emergency� action to get out of such situations� To this
end� the robot was supplied with an extra action choice � to jump to a random location
in the room� The robot was retrained with this new action available and the resulting
policy examined� However� rather than simply travelling towards the goal and jumping
if it was forced to turn back at any point� the robot had learnt a completely di�erent
and much more e�cient solution� At the start of the trial� the robot chose to jump to
random locations until it happened to arrive near the goal� At this point� it would return
to using the conventional moves to cover the remaining distance� On average� the number
of random jumps required to get near to the goal was signi�cantly less than the number
of standard moves required to reach the same point � the reinforcement learning system
had arrived at a better solution than the designer had had in mind�



Appendix A

Experimental Details

The experiments described in the preceding chapters involved a number of parameters
with settings that are presented here�

A�� The Race Track Problem

In section �� the Race Track problem was presented� The values of the parameters used
for exploration and the learning rate were exactly as used in the original technical report
�Barto et al� ���	 and are reproduced below� The Q�function values were initialised to
zero for all state�action pairs in the lookup table�
The value of T in the Boltzmann exploration equation ��� was changed according to

the following equation�

T� � Tmax �A��	

Tk�� � Tmin� �Tk � Tmin	 �A��	

where k is the step number �cumulative over trials	�  � ������ Tmax � ��� and Tmin � ����
The fact that the step number� k� is used means that exploration is reduced towards the
minimum value of ��� extremely quickly� For example� t���� � ����� Yet the length of
the �rst trial was over ����� steps on the small track� and of the order of ������ steps for
the large track when non�RTDP methods were used� Thus� the training algorithms
learnt with e�ectively a �xed exploration constant of ����

The learning rate was set for each Q�xt� at	 visited according to�

��xt� at	 �
���

� � n�xt� at	
�A�	

where �� � ���� � � ��� and n�x� a	 was a count of the number of times state�action pair
Q�x� a	 had been visited in the course of the trials�
The value of � was � in all trials�

��
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Figure A��� Two snapshots taken from the real�time robot simulator� Left� The robot navigates
itself through a large room full of obstacles� Right� He�s behind you� Snapshot from a robot
chase�

A�� The Robot Problem

The Robot Problem was introduced in chapter � and used to test the MLP algorithms
presented in this thesis� Here we present the implementation details required to reproduce
this experimental environment�

A���� Room Generation

The environment used in the trials consisted of a room of dimension dsize � dsize units
containing � randomly placed convex obstacles� The goal position was generated at a
random coordinate within the room� The obstacles were then generated by �rstly placing
a centre point �x� y	 with both x and y in the range �dsize � ��rmax � dgap	� � dgap� The
maximum radius for the obstacle was then calculated using the minimum of rmax or
dn � rn � dgap where dn and rn were the centre to centre distance to obstacle n and
its radius respectively� The actual radius was selected randomly between this maximum
value and the minimum allowable obstacle size rmin �if the maximum radius was smaller
than the minimum allowable� then a new centre point was generated and the process
repeated	�
Having de�ned the bounding circle for the obstacle� the coordinates of the vertices

were then generated by �rstly selecting a random angle �� in the range ��� ��� and then
selecting further angles �n at steps of ��� ��
� until either � vertices were allocated� or the
�n � �� � ��� The coordinates of the vertices were the positions on the circumference of
the bounding circle at each of the selected angles�
The starting position for the robot was then generated by selecting points until one

was found that was more than dgap from each obstacle bounding circle and the boundary
of the room�
The values used were dsize � ��� dgap � �� rmax � �� rmin � ���� For the �circle world�

introduced in section ����� dsize � ���� rmax � ��� and the number of obstacles �which
were generated as for the bounding circles described above	 was increased to ���

A���� Robot Sensors

The sensor readings available to the robot were described in section ���� These values
were coarse coded before being input to the neural networks using a scheme illustrated by
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Figure A��� Coarse coding of a real�valued input to provide a suitable input for a neural
network� The diagram shows how an input value �represented by the vertical dashed line� is
coded using values between �
��� by reading o� the values from � sigmoid functions spread
across the input space�

Fig� A��� Each real�valued input was spread across N network inputs� in� by feeding them
through a sigmoid function�

in �
�

� � expwn�bn�x�
�A��	

with single weight wn and bias value bn which were �xed �note that the input is subtracted
from the bias before being weighted by wn	� x is a real�valued input� which is therefore
shifted and scaled by bn and wn� and produces an input to the network in the range ������
So� i is a N�tuple of values between ������ with the number that are �on� �close to ���	 rising
as the size of x decreases�
The number of sigmoid functions and their weight and bias values are given here by

the following formulae�

wn �
�N

r
�A��	

bn �

�
�n � �

�

�
r

N
�A�
	

where N is the number of network inputs� and r is the range ��� r� of values of x over which
the inputs will be most sensitive� Thus� the values given below are for N and r�
The �ve range sensor inputs used  network inputs each �N � 	 and had a range r � �

�c�f� dsize � ��	� The goal distance used N � � and r � ��� The relative angle to the
goal� � �range ��� ���	� was coded in two halves �to represent the concepts of goal�to�left
and goal�to�right	� � � � was fed into  inputs �N � � r � �	 and � � � into another 
�N � � r � �	�
The overall thinking behind this form of coding was that more inputs should come

�on� as the value x became more important� Thus short ranges to obstacles result in the
related network inputs switching on� as does a low range to the goal� or large relative goal
angles �if the robot is facing towards the goal� all the angle network inputs will be zero	�
The robot was considered at the goal if it was within a radius of � unit of the goal

position and crashed if within � unit of an obstacle� At each time step� the maximum
distance it could move forward was d � ����
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Calculating Eligibility Traces

For completeness� the calculation of the output gradients and hence the eligibility traces
is given here for the case where the back�propagation algorithm is used�
A multi�layer perceptron is a collection of interconnected units arranged in layers�

which here are labelled i� j� k��� from the output layer to the input layer� A weight on a
connection from layer i to j is labelled wij � Each unit performs the following function�

oi � f��i	 �B��	

�i �
X
j

wijoj �B��	

where oi is the output from layer i and f��	 is a sigmoid function�
The network produces I outputs� of which only one� o�i � is selected� The output gradient

is de�ned with respect to this output for the output layer weights as�

	o�i
	wij

� f ���i	oj �B�	

where f ���	 is the �rst di�erential of the sigmoid function� This will be zero for all but the
weights wij attached to the output unit which produced the selected output� o

�
i �

For the �rst hidden layer weights� the gradient therefore is simply�

	o�i
	wjk

� f ����i 	wijf
���j	ok �B��	

These values are added to the current eligibilities� Generally� there would be one output
gradient for each output i � I and hence I eligibilities would be required for each weight�
This is so that when temporal di�erence error� Ei� of each output arrived� the weights
could be updated according to�

�wjk � �t
X
i

Eie
i
jk �B��	

where eijk is the eligibility on weight wjk which corresponds to output i� However� in Q�
learning� there is only a single temporal di�erence error which is calculated with respect
to the output which produced the current prediction� Hence only one output gradient is
calculated at each time step and only one eligibility is required per weight�

���
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